Термометр сопротивления — датчик для измерения температуры: что это такое, описание и виды

Принцип действия термометра сопротивления

Термометры сопротивления могут использоваться для измерения температуры электрическим путем, так как существует прямо пропорциональная зависимость между изменениями сопротивления и изменением температуры.

Другими словами, при повышении температуры величина сопротивления возрастает прямо пропорционально, а при понижении температуры сопротивление пропорционально уменьшается. Подобный принцип используется в термометрах сопротивления, так как сопротивление термометра уменьшается или увеличивается пропорционально температуре процесса, который он измеряет. Любое изменение сопротивления может быть зарегистрировано и преобразовано в температурные показания с помощью таблицы, или отображено на шкале, которая откалибрована в единицах измерения температуры.

Как и термопара или любой другой температурный датчик термометр сопротивления (RTD) функционален при измерении температуре только, если он подсоединен к электрической цепи. Обычно с термометрами сопротивления применяются мостовые схемы, так как такие схемы позволяют добиться высокой точности. Вместе с мостовой схемой используется батарея, которая служит в качестве источника питания. Цепи термометров сопротивления должны иметь внешний источник питания, так как они не способны генерировать напряжение сами.

Мостовая схема термометра сопротивления с батареей

Мостовая схема, изображенная на рисунке выше состоит из пяти резисторов: Р1, R2, R3, R4, R5; и точек соединения: А, В, С, D.

В данном случае давайте предположим, что каждый резистор в мостовой схеме обладает одинаковым сопротивлением. Так как ток протекает от минуса к плюсу в данном контуре, то протекание начинается с минусовой клеммы батареи и ток достигает точки А. В точке А ток расщепляется на равные части: одна половина протекает через сопротивление R1 в точку В, а другая половина протекает через R2 к точке С. Так как сопротивление всех резисторов одинаковое, то между точками В и С нет разницы в величине напряжения, поэтому ток через R5 не протекает.

Когда ток через средний резистор не протекает, то мост, как говорится «уравновешен». В данном примере ток протекает от точки В, через R3 в точку D. Ток также протекает от точки С через R4 в точку D. Ток от точки D возвращается на положительную клемму батареи, завершая цепь.

Протекание тока через уравновешенный мост

Мостовая схема, изображенная на рисунке выше похожа на предыдущую схему за исключением того, что резистор R3 заменен термометром сопротивления. В данной конфигурации ток по-прежнему протекает от минусовой клеммы батареи на точки В и С. Однако, если сопротивление термометра сопротивления (RTD) отличается по величине от сопротивления резистора R4, то между точками В и С появится напряжение. Это означает, что мост неуравновешен и ток будет протекать через резистор R5.

Мостовая схема с термометром сопротивления

Ток, протекающий через мост, может быть измерен, если мы заменим R5 измерительным прибором, который и будет определять температуру, измеряя ток. Так схема обеспечивает высокую точность, то она часто используется вместе с термометрами сопротивления для измерения температуры.

Мостовая схема с термометром сопротивления и измерительным прибором

Когда для измерения температуры используются термометры сопротивления, то они включаются в схему, подобно той, что показана на рисунке выше. Во многих случаях термометры сопротивления расположены на удалении от остальных элементов цепи, так как они подвержены воздействию температуры технологического процесса. По мере того, как температура вокруг термометра меняется, то пропорционально меняется величина сопротивления термометра. Когда сопротивление термометра меняется, то мост становится неуравновешенным и определенный ток протекает через измерительный прибор. Этот ток пропорционален изменениям температуры. Температура процесса затем может быть определена по показаниям шкалы прибора. В некоторых случаях шкалы откалиброваны на показания величины сопротивления, а не температуры. В таких случаях надо воспользоваться переводной таблицей для перевода ом в градусы.

Термистор

Как следует из названия, термистор (т.е., терморезистор) представляет собой датчик температуры, сопротивление которого зависит от температуры.

Термисторы выпускаются двух типов: PTC (с положительным температурным коэффициентом) и NTC (с отрицательным температурным коэффициентом). Сопротивление PTC термистора с ростом температуры увеличивается. А сопротивление NTC термистора, наоборот, с увеличением температуры уменьшается, и этот тип, по-видимому, является наиболее часто используемым типом термисторов. Смотрите рисунок 1 ниже.

Рисунок 1 – Условные графические обозначения термисторов PTC и NTC

Важно понимать, что связь между сопротивлением термистора и его температурой очень нелинейна. Смотрите рисунок 2 ниже

Рисунок 2 – Зависимость сопротивления NTC термистора от температуры

Стандартная формула сопротивления NTC термистора в зависимости от температуры определяется следующим образом:

\[R_T=R_{25C}\cdot e^{\left\{\beta\left[\left(1/\left(T+273\right)\right)-\left(1/298\right)\right]\right\}}\]

где

  • R25C – номинальное сопротивление термистора при комнатной температуре (25°C). Данное значение, как правило, приводится в техническом описании;
  • β (бета) – постоянная материала термистора в Кельвинах. Это значение обычно указывается в техническом описании;
  • T – реальная температура термистора в Цельсиях.

Тем не менее, существует два простых метода, используемых для линеаризации поведения термистора, а именно режим сопротивления и режим напряжения.

Режим линеаризации сопротивления

В режиме линеаризации сопротивления параллельно термистору помещается обычный резистор. Если значение резистора равно сопротивлению термистора при комнатной температуре, область линеаризации будет симметрична относительно точки комнатной температуры. Смотрите рисунок 3 ниже.

Рисунок 3 – Режим линеаризации сопротивления

Режим линеаризации напряжения

В режиме линеаризации напряжения термистор ставится последовательно с обычным резистором, образуя при этом делитель напряжения. Этот делитель напряжения должен быть подключен к известному, фиксированному, стабилизированному источнику опорного напряжения VREF.

Эта конфигурация приводите к созданию выходного напряжения, которое относительно линейно зависит от температуры. И, как и в режиме линеаризации температуры, если сопротивление резистора равно сопротивлению термистора при комнатной температуре, то область линеаризации будет симметрична относительно точки комнатной температуры. Смотрите рисунок 4 ниже.

Рисунок 4 – Режим линеаризации напряжения

Термопара

Термопары обычно используются для измерения более высоких температур и более широких температурных диапазонов.

Чтобы резюмировать, как работают термопары: любой проводник, подвергнутый температурному градиенту, будет генерировать небольшое напряжение. Это явление известно как эффект Зеебека. Величина генерируемого напряжения зависит от типа металла. Практические применения эффекта Зеебека используют два разнородных металла, которые соединены на одном конце и разделены на другом. Температуру соединения можно определить по напряжению на разомкнутых концах проводов.

Существуют различные типы термопар. Определенные комбинации стали популярными, и выбор комбинации зависит от различных факторов, включающих в себя стоимость, доступность, химические свойства и стабильность. Для разных применений лучше всего подходят разные типы, и их обычно выбирают на основе требуемого диапазона температур и чувствительности.

Графики характеристик термопар смотрите на рисунке 5 ниже.

Рисунок 5 – Характеристики термопар

Схема подключений

Для того, чтобы узнать значение сопротивления его надо измерить. Сделать это можно с помощью включения его в измерительную цепь. Для этого используют 3 типа схем, которые отличаются между собой количеством проводов и достигаемой точностью измерений:

  • 2-проводная цепь. Содержит минимальное количество проводов, а значит, самый дешевый вариант. Однако, при выборе данной схемы достичь оптимальной точности измерений не получится — к сопротивлению термометра будет прибавляться сопротивление используемых проводов, которые и будут вносить погрешность, зависимую от длины проводов. В промышленности такая схема применяется редко. Используется лишь для измерений, где не важна особая точность, а датчик находится в непосредственной близости от вторичного преобразователя. 2-проводная схема изображена на левом рисунке.
  • 3-проводная цепь. В отличии от предыдущего варианта здесь добавляется дополнительный провод, накоротко соединённый с одним из двух других измерительных. Его основная цель — возможность получить сопротивление подключенных проводов и вычесть это значение (компенсировать) из измеренного значения от датчика. Вторичный прибор, кроме основного измерения, дополнительно измеряет сопротивление между замкнутыми проводами, получая тем самым значение сопротивления проводов подключения от датчика до барьера или вторичника. Так как провода замкнуты, то это значение должно быть равно нулю, но по факту из-за большой длины проводов, это значение может достигать нескольких Ом. Далее эта погрешность вычитается из измеренного значения, получая более точные показания, за счёт компенсации сопротивления проводов. Такое подключение применяется в большинстве случаев, поскольку является компромиссом между необходимой точностью и приемлемой ценой. 3-х проводная схема изображена на центральном рисунке.
  • 4-проводная цепь. Цель такая же, что и при использовании трехпроводной схемы, но компенсация погрешности идёт обоих измерительных проводов. В трехпроводной схеме значение сопротивления обоих измерительных проводов принимается за одинаковое значение, но по факту оно может незначительно отличаться. За счет добавления ещё одного четвёртого провода в четырехпроводной схеме (закороченного со вторым измерительным проводом), удается получить отдельно его значение сопротивления и почти полностью компенсировать всё сопротивление от проводов. Однако, данная цепь является более дорогой, так как требуется четвёртый проводник и поэтому реализуется или на предприятиях с достаточным финансированием, или при измерении параметров, где нужна большая точность. 4-х проводную схему подключений вы можете увидеть на правом рисунке.

Типы чувствительных элементов в платиновых термопреобразователях

     На сегодняшний день выделяют следующие разновидности чувствительных элементов:

1. В виде «свободной от напряжения спирали».

2. В виде «полой конструкции».

3. Устройство из пленки.

4. Устройство из платины со стеклянной оболочкой.

     Самым распространенным и надежным видом является «свободная от напряжения спираль», чаще всего его можно встретить у российских производителей. Внешне этот элемент может выглядеть по-разному – в зависимости от использованных материалов и величины отдельных деталей.

     «Полая конструкция» – тип устройства, внедренный сравнительно недавно. Чаще всего он востребован на промышленных предприятиях, связанных с особым производством (например, в атомной промышленности). Тип конструкции данного сенсора обуславливает его значительную точность, надежность и стабильность в эксплуатации. Повышенная себестоимость материалов сборки делает эту деталь весьма дорогостоящей.

     К числу чувствительных элементов, широко применяемых за рубежом, относится пленочный тип, при котором на керамическую подложку нанесен тонкий платиновый слой. Данная разновидность имеет массу преимуществ: невысокую стоимость, практичность, небольшие габариты и малый вес. Минусом устройства называют низкую стабильность, однако в последнее время проводятся постоянные разработки и исследования, направленные на устранение этого недостатка.

     Устройство, представляющее собой платиновую проволоку с покрытием из стекла, можно назвать одной из наиболее функциональных за счет полной герметизации и устойчивости к высокой влажности. Тем не менее, использовать этот прибор можно лишь при определенном температурном режиме. Стоимость этого типа элемента относится к сегменту выше среднего.

Термосопротивления с клеммной головкой

Чертеж  МодельПараметрыМатериал Длина монтажной части, мм
        015D=8 мм сталь12Х18Н10Т60, 80, 100, 120, 160, 180, 200, 250, 320, 400, 500, 630, 800, 1000, 1250,1600, 2000
025D=10 мм
 035D=8 мм М=20х1,5 мм S=22 мм сталь12Х18Н10Т60, 80, 100, 120, 160, 180, 200, 250, 320, 400, 500, 630, 800, 1000, 1250,1600, 2000
045D=10 мм М=20х1,5 мм S=22 мм
145D=6 мм М=20х1,5 мм S=22 мм
     055D=10 мм М=20х1,5 мм S=22 ммсталь12Х18Н10Т80, 100, 120, 160, 180, 200, 250, 320, 400, 500, 630, 800, 1000, 1250,1600, 2000
   065D=8 мм М=20х1,5 мм S=27 ммсталь12Х18Н1060, 80, 100, 120, 160, 180, 200, 250, 320, 400, 500, 630, 800, 1000, 1250,1600, 2000
075D=10 мм М=20х1,5 мм S=27 мм
085D=10 мм М=27х2 мм S=32 мм
  095D=10 мм М=20х1,5 мм S=22 ммсталь12Х18Н10Т60, 80, 100, 120, 160,180, 200, 250, 320, 400, 500, 630, 800, 1000, 1250,1600, 2000
  105 

D=8 мм М=20х1,5 мм S=27 мм

 

сталь12Х18Н10Т

 60, 80, 100, 120, 160, 180, 200, 250, 320, 400, 500, 630, 800, 1000, 1250,1600, 2000
     125D=6 мм (-50…+100 град) 

сталь12Х18Н10Т

60, 80, 100
     125ЛD=6 мм сталь12Х18Н10Т80, 100, 120

Термометр сопротивления (термопреобразователь): типы, конструкция, принцип действия

Термометр сопротивления – это измерительный прибор, работающий в широком диапазоне температур в различных промышленных условиях. Дополнительные названия этого устройства – термометр сопротивления и термистор.

Основными преимуществами термометров сопротивления являются повышенная стабильность, приближение характеристик к линейной зависимости и высокая взаимозаменяемость.

Его недостатками является необходимость использования трех- или четырехпроводных цепей для обеспечения точности измеряемых значений.

Кстати, если в документации на терморезистор указан диапазон температур, который шире, чем диапазон указанного класса допуска, то указанный класс допуска не будет действителен во всем рабочем диапазоне. Например, если датчик Pt1000 класса А предназначен для измерения температуры от -200 до +600°C, он будет точен только до ±(0,15+0,002|T|) при температуре до +300°C и, вероятно, обеспечит класс В выше этого значения.

Метрологическая стабильность термометра сопротивления

Метрологические характеристики ТДС неизбежно изменяются в процессе эксплуатации. Скорость изменения зависит от многих факторов, таких как рабочая температура, скорость и частота изменения температуры, наличие химически активных веществ в измеряемой среде и т.д. Поэтому для датчиков TSPT, TSMT, TSPT Ex, TSMT Ex введены группы условий эксплуатации, в зависимости от которых стандартизованы допустимые значения дрейфа метрологических характеристик термометров сопротивления.

РМГ-74 “МЕТОДЫ ОПРЕДЕЛЕНИЯ ИНТЕРВАЛА И ИНТЕРВАЛА ИЗМЕРЕНИЙ” предписывает определять интервал между поверками (ИВИ) как период времени/время работы СИ, в течение которого изменение метрологических характеристик не превышает модуль класса допуска СИ минус систематическая погрешность измерения при испытании СИ.

Для ТДС определяющим фактором дрейфа является время работы датчика при повышенной температуре. Влияние старения на дрейф ТДС практически не рассматривается в научных публикациях. Однако известно, что величина и скорость дрейфа ТДС зависит от значения измеряемой температуры. Известно, что медные ТДС менее стабильны, чем платиновые ТДС. Доминирующей причиной дрейфа в неэкстремальных условиях эксплуатации является изменение физических свойств металлов под воздействием температуры, причем величина изменения зависит от значения максимальной рабочей температуры и времени воздействия.

Предлагается учитывать условия эксплуатации при определении интервалов поверки, разделив их на диапазоны измеряемых температур. Для каждого диапазона следует указать интервал проверки от одного до пяти лет. Предлагаемая градация диапазонов показана на рисунке 4.

Свойства платины сохраняются: линейная зависимость сопротивления от температуры, устойчивость к высоким температурам, термическая стабильность. По этой причине наиболее популярными платиновыми датчиками сопротивления являются Pt100 и Pt1000. Медные элементы 50M и 100M изготавливаются путем ручной намотки тонкой медной проволоки, а платиновые элементы 50P и 100P – путем намотки платиновой проволоки.

Cплавы неблагородных металлов

Термоизмерители NiCr-NiAl изготавливаются под задачи в кислых или инертногазовых средах с температурой до 1200 °C и максимальной длиной коннектора. Уязвимы для сернистых сред, а в связи с устойчивостью к окислению относительно других типов, способны применяться в температурных условиях более 550 °С вплоть до предельного рабочего давления.

Тип J. Железо — константан

Термоизмерители Fe-CuNi показывают наилучшие результаты в условиях вакуума, в кислых или восстановимых средах или инертных газах. Агрегаты задействуются для измерения температур до 750 °C с максимальной длиной коннектора.

Тип N. Нихросил-нисил.

Термоизмерители NiCrSi-NiSi наиболее благоприятны для эксплуатации в кислых средах, инертных газах или сухих восстановимых средах в температурных условиях до 1200 °C. Уязвимы для сернистых сред. Данные устройства отмечены существенной точностью в процессе термоизмерения высоких температур. Термо-ЭДС и доступный диапазон схож с измерителями типа К. Характеризуются высокими продолжительностью службы и стабильностью параметров.

Тип E. Хромель-константановые.

Термоизмерители NiCr-CuNi предназначены для работы в кислых или инертногазовых средах при температуре до 900 °C с максимальной длиной коннектора. Среди всех распространенных аппаратных продуктов тип Е отмечен наиболее высокой напряжением электродвижущей силой на метрологический показатель °С.

Тип T. Медь — константан.

Тип Т Cu-CuNi функционален в температурах ниже 0 °C и ограничен 350 °C. Эти приспособления эффективно работают в кислых, восстанавливающих и инертногазовых средах. Также они не столь уязвимы коррозии в высоковлажных условиях, пользуются большим доверием у широкого спектра потребителей.

Зависимость сопротивления платинового термосопротивления от температуры

Для промышленных платиновых термометров сопротивления используется уравнение Каллендара-Ван Дьюзена (en), с известными коэффициентами, которые установлены экспериментально и нормированы в стандарте DIN EN 60751-2009 (ГОСТ 6651-2009):

RT=R1+AT+BT2+CT3(T−100)(−200∘CT∘C),{\displaystyle R_{T}=R_{0}\left\;(-200\;{}^{\circ }\mathrm {C}
RT=R1+AT+BT2(∘C≤T850∘C),{\displaystyle R_{T}=R_{0}\left\;(0\;{}^{\circ }\mathrm {C} \leq T
здесь RT{\displaystyle R_{T}} — сопротивление при температуре T{\displaystyle T} °C,
R{\displaystyle R_{0}} сопротивление при 0 °C,
A,B,C{\displaystyle A,B,C} — коэффициенты — константы, нормированные стандартом:
A=3.9083×10−3∘C−1{\displaystyle A=3.9083\times 10^{-3}\;{}^{\circ }\mathrm {C} ^{-1}}
B=−5.775×10−7∘C−2{\displaystyle B=-5.775\times 10^{-7}\;{}^{\circ }\mathrm {C} ^{-2}}
C=−4.183×10−12∘C−4.{\displaystyle C=-4.183\times 10^{-12}\;{}^{\circ }\mathrm {C} ^{-4}.}

Поскольку коэффициенты B{\displaystyle B} и C{\displaystyle C} относительно малы, сопротивление растёт практически линейно при увеличении температуры.

Для платиновых термометров повышенной точности и эталонных термометров выполняется индивидуальная градуировка в ряде температурных реперных точек и определяются индивидуальные коэффициенты вышеприведенной зависимости.

Правильный выбор — точные результаты

Ключевым моментом для успешного применения датчиков температуры является постановка основополагающих вопросов и подбор датчика, наиболее пригодного для поставленных задач и конкретных технологических процессов с учетом всех имеющихся данных. В качестве примера можно привести принятие решения об использовании датчика температуры на участке трубопровода с постоянно изменяющимися условиями при непрерывной вибрации и изменении температуры в диапазоне –200…+300 °C. Целью такого решения является достижение максимально возможной точности, несмотря на описанные непростые условия. Для указанного диапазона температур пригодны термодатчики обоих типов. Хорошо известно, что ТП обладают высокой стойкостью к вибрации, поэтому на первый взгляд может показаться, что ТП являются хорошим вариантом решения поставленной задачи. Тем не менее в данном конкретном случае требуется выполнение измерений с максимально возможной точностью. Правильным выбором для данной задачи будет использование тонкопленочных ТС. Известно, что тонкопленочные ТС отличаются более высокой стойкостью к вибрации по сравнению с проволочными и обеспечивают более высокую точность измерений по сравнению с термопарами.

Приведем еще один пример: измерение температуры в реакторе в диапазоне +550…+900 °C при низком уровне вибрации. Поставлена цель измерения температуры с точностью ±5 °C. ТС дают стабильно точные показания, особенно в условиях невысокой вибрации. Однако не стоит забывать о диапазоне температур. Как правило, ТС не следует использовать при температурах свыше +850 °C. Поскольку температура данного процесса обработки может подниматься до +900 °C, следует остановить свой выбор на ТП. Вероятность получения неверных показаний датчиков или их отказа повышается при их использовании в неподходящих диапазонах температур.

Основные характеристики термосопротивлений

  1. Номинальная статическая характеристика (НСХ) и точность
  2. Диапазон температур, на котором определяется НСХ и обеспечивается заявленная точность
  3. Корпус датчика, тип и длина выводов

Номинальная статическая характеристика (НСХ)2ГОСТ 6651-2009-1R(T) = R0 (1 + A x T + B x T2)R(T) = R0 (1 + A x T + B x T2 + C x (T-100) x T3)

  • Pt 3850 ppm/K (наиболее распространенная характеристика современных термосопротивлений)
    A = 3.9083 x 10-3 °C-1
    B = -5.775 x 10-7 °C-2
    C = -4.183 x 10-12°C-4
  • Pt 3911 ppm/K (характеристика остается востребованной в РФ, т.к. в прошлом только она была внесена в ГОСТ)
    A = 3.9692 x 10-3 °C-1
    B = -5.829 x 10-7 °C-2
    C = -4.3303 x 10-12°C-4

R(T) = R0 (1 + A x T + B x T2 + C x T3 + D x T4 + E x T5 + F x T6)Точность датчика

Другие названия Допуск, °С
Класс АA Class Y
1/3 DIN
1/3 B
F 0.1 (если речь о тонкопленочном датчике)
W 0.1 (если речь о намоточном датчике)
±(0.1 + 0.0017 |T|)
Класс A 1/2 DIN
1/2 B
F 0.15 (если речь о тонкопленочном датчике)
W 0.15 (если речь о намоточном датчике)
±(0.15 + 0.002 |T|)
Класс B DIN
F 0.3 (если речь о тонкопленочном датчике)
W 0.3 (если речь о намоточном датчике)
±(0.3 + 0.005 |T|)
Класс C Class 2B
Class BB
F 0.6 (если речь о тонкопленочном датчике)
W 0.6 (если речь о намоточном датчике)
±(0.6 + 0.01 |T|)
Class K
1/10 DIN
±(0.03 + 0.0005 |T|)
Class K
1/5 DIN
±(0.06 + 0.001 |T|)

для платиновых датчиков 3850 ppm/K

Преимущества и недостатки термометров сопротивления

Как и любой прибор, использование термометров сопротивления имеет ряд преимуществ и недостатков. Рассмотрим их.

Преимущества:

  • практически линейная характеристика;
  • измерения достаточно точны (погрешность не более 1°С);
  • некоторые модели дешёвые и просты в использовании;
  • взаимозаменяемость приборов;
  • стабильность работы.

Недостатки:

  • малый диапазон измерений;
  • довольно низкая предельная температура измерений;
  • необходимость использования специальных схем подключения для повышенной точности, что увеличивает стоимость внедрения.

Термометр сопротивления — распространенное устройство практически во всех отраслях промышленности. Этим прибором удобно измерять невысокие температуры, не опасаясь за точность полученных данных. Термометр не отличается особой долговечностью, однако, приемлемая цена и простота замены датчика перекрывают этот небольшой недостаток.

Типы датчиков температуры: термисторы, термопары, термометры сопротивления, аналоговые и цифровые датчики

Датчики уровня: типы, характеристики, рекомендации по выбору

Как подключить и настроить датчик движения для управления освещением: электрические схемы подключения и настройка датчика

Что такое термопара, принцип действия, основные виды и типы

Что такое петля фаза-ноль простым языком — методика проведения измерения

Для чего нужен пирометр и как измерять температуру бесконтактным методом

Никелевые термометры сопротивления

Температурный коэффициент (далее ТК) у данного типа измерительных устройств самый высокий — 0,00617°С-1. Диапазон измеряемых температур также существенно уже, чем у платиновых ЧЭ (от -60,0°С до 180,0°С). Основное достоинство данных приборов – высокий уровень выходного сигнала. В процессе эксплуатации следует учитывать особенность, связанную с приближением температуры нагрева к точке Кюри (352,0°С), вызывающую существенное изменение параметров ввиду непредсказуемого гистерезиса.

Данные устройства практически не используются, поскольку в большинстве случаев их можно заменить приборами с медными чувствительными элементами, которые существенно дешевле и технологичнее (проще в производстве).

Особенности конструкции устройств

Самый распространенный конструкторский вариант имеет термометр в виде «свободной от напряжения спирали», который производится многими отечественными компаниями. Разница в моделях этого типа заключается в различных размерах используемых деталей и применении разнообразных материалов, использующихся при герметизации чувствительного компонента. Для различных температур необходимо использовать свой тип глазури. Этот тип ТС распространен не только в нашей стране, но и заграницей. Схема термометра сопротивления этого распространенного вида показана ниже.

Второй вид ТС менее популярен из-за своей дороговизны. Он называется на языке специалистов «полой конструкцией». Такой термометр можно найти на важных государственных предприятиях или объектах атомной и оборонной промышленности. Полый тип чувствительного элемента обладает высокой надежностью и стабильностью в работе.

Третий вид ТС – пленочные контрольные элементы. На керамическую основу наносят тонкий слой платины. Такой тип устройства широко распространен за рубежом. Этот термометр сопротивления дешевле предыдущих приборов и практичен, так как имеет меньшие размер и вес. Однако есть и свой минус – низкие стабильность и устойчивость к изменениям окружающей среды и резким перепадам температуры.

Четвертый вариант – платиновый стержень, покрытый массой из стекла. Такой ТС получается дорогим, но зато обеспечивается полная герметизация чувственного компонента и повышается устойчивость к влаге. Но у этого термометра низкий диапазон замера температур.

Цифровые микросхемы термометров

Цифровые температурные датчики сложнее, но они могут быть очень точными. Кроме того, они могут упростить всю разработку, поскольку аналого-цифровое преобразование происходит внутри микросхемы термометра, а не в отдельном устройстве, таком как микроконтроллер. Например, DS18B20 от Maxim Integrated имеет точность ±0.5°C и диапазон температур от -55°C до +125°C.

Кроме того, некоторые цифровые микросхемы могут быть настроены на питание от линии данных, что позволяет подключать их только двумя проводами (то есть, данные/питание и земля). Более подробно об “однопроводном” интерфейсе можно почитать здесь.

Рисунок 7 – Структурная схема DS18B20 из технического описания

Градуировочные таблицы термометров сопротивления

Градуировочные таблицы — это сводная сетка, по которой можно легко определить при какой температуре термометр будет иметь определенное сопротивление. Такие таблицы помогают работникам КИПиА оценить значение измеряемой температуры по определённому значению сопротивления.

В рамках этой таблицы существуют специальные обозначения ТС. Их вы можете увидеть в верхней строчке. Цифра означает значение сопротивления датчика при 0°С, а буква металл, из которого оно создано.

Для обозначения металла используют:

  • П или Pt — платина;
  • М — медь;
  • N — никель.

Например, 50М — это медный ТС, с сопротивлением 50 Ом при 0 °С.

Ниже представлен фрагмент градуировочной таблицы термометров.

50М (Ом)100М (Ом)50П (Ом)100П (Ом)500П (Ом)

-50 °С39.378.640.0180.01401.57
0 °С5010050100500
50 °С60.7121.459.7119.41193.95
100 °С71.4142.869.25138.51385
150 °С82.1164.278.66157.311573.15

Виды термодатчиков

Наиболее распространенными считаются следующие типы термометров сопротивления (далее ТС):

  1. Полупроводниковые датчики. Отличительные особенности этих приборов заключается в высокой точности и стабильной чувствительности, а также в возможности измерения быстротечных процессов. Благодаря низкому измерительному току имеется возможность работы со сверхнизкими температурами (до -270°С). Пример конструкции полупроводникового ТС.

    Конструкция термистора

Обозначения:

  • А – Выводы измерителя.
  • В – Стеклянная пробка, закрывающая защитную гильзу.
  • С – Защитная гильза, наполненная гелием.
  • D – Электроизоляционная пленка, покрывающая внутреннюю часть гильзы.
  • E – Полупроводниковый чувствительный элемент (далее ЧЭ), в приведенном примере это германий, легированный сурьмой.
  1. Металлические датчики. У таких измерителей в качестве ЧЭ выступает проволочный или пленочный резистор, помещенный в керамический или металлический корпус. Металл, используемый для изготовления чувствительного элемента, должен быть технологичен и устойчив к окислению, а также обладать достаточным температурным коэффициентом. Таким критериям практически идеально отвечает платина. Там, где не столь высокие требования к измерениям, может использоваться никель или медь. В качестве примера можно привести термодатчики: PT1000, PT500, ТСП 100 П, ТСП pt100, ТСП 50П, ТСМ 296, ТСМ 045, ТС 125, Jumbo, ДТС Овен и т.д.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий