Все о драйверах для светодиодных светильников

Импульсные блоки питания

Во-первых, выпрямление напряжения происходит сразу же. То есть, подается на вход переменно 220В и тут же на входе преобразуется в постоянное 220V.

Далее стоит генератор импульсов. Главная его задача – создать искусственно переменное напряжение с очень большой частотой. В несколько десятков или даже сотен килогерц (от 30 до 150кГц). Сравните это с привычными нам 50 Гц в домашних розетках.

Кстати за счет такой огромной частоты, мы практически не слышим гул импульсных трансформаторов. Объясняется это тем, что человеческое ухо способно различать звук до 20кГц, не более.

Третий элемент в схеме – импульсный трансформатор. Он по форме и конструкции напоминает обычный. Однако главное его отличие – это маленькие габаритные размеры.

Это как раз таки и достигается за счет высокой частоты.

Из этих трех элементов самым главным является генератор импульсов. Без него, не было бы такого относительно маленького блока питания.

Преимущества импульсных блоков:

маленькая цена, если конечно сравнивать по мощности его, и такой же блок собранный на обычном трансформаторе

КПД от 90 до 98%

напряжение питания можно подавать в большом разбросе

при качественном производителе блока питания, у импульсных ИБП более высокий косинус фи

Есть и недостатки:

усложненность сборочной схемы

сложная конструкция

если вам попался не качественный импульсный блок, то он будет выдавать в сеть кучу высокочастотных помех, которые будут влиять на работу остального оборудования

Для светодиодных же светильников такие блоки не подойдут. Поэтому для их питания используются драйверы.

Трансформаторный блок

Сегодня уже довольно редко можно встретить применение трансформаторного БП. Схема их сборки и работы довольно проста и понятна.

Самый главный элемент здесь, безусловно трансформатор. В домашних условиях он преобразует напряжение 220В в напряжение 12 или 24В. То есть, идет прямое преобразование одного напряжения в другое.

Частота сети при этом, привычные нам всем 50 Герц.

Далее за ним стоит выпрямитель. Он выпрямляет синусоиду переменного напряжения и на выходе выдает «постоянку». То есть 12В, подаваемые к потребителю, это уже постоянное напряжение 12V, а не переменное.

У такой схемы 3 главных достоинства:

ее простота

незамысловатость конструкции

относительная надежность

Однако есть здесь и недостатки, которые заставили разработчиков задуматься и придумать что-то более современное.

во-первых это большой вес и приличные габариты

как следствие первого недостатка – большой расход металла на сборку всей конструкции

ну и ухудшает все дело низкий косинус фи и низкий КПД

Именно поэтому и были изобретены импульсные источники питания. Здесь уже несколько иной принцип работы.

Изготовление драйвера для светодиодов своими руками

Если в наличии пользователя есть несколько полупроводниковых кристаллов или линейка подсветки из старого телевизора, он может самостоятельно сделать источник тока для них.

Для этого следует приобрести приборы и детали или выпаять радиоэлементы из старой аппаратуры. Часто КПД устройств, сделанных своими руками, намного выше, чем у промышленных образцов.

Материалы и инструменты для работы

Для самодельного простого драйвера потребуются:

  • конденсаторы: простой 0,27 мкф на 400 V и 2 электролитических 500×16 V и 100×16 V;
  • резистор 500 кОм на 0,5 W;
  • 4 диода или готовый мост на 220 V;
  • микросхема LM317;
  • паяльник мощностью 20-40 Вт;
  • флюс и припой (желательно типа ПОС);
  • пассатижи, кусачки, плоскогубцы;.
  • многожильные изолированные проводники из меди сечением 0,35-1 мм²;
  • трубка термоусадочная;
  • мультиметр или тестер;
  • изолента;
  • плата для распайки элементов.

Схемы простого драйвера для светодиода 1 Вт и мощного

Классический преобразователь представляет собой сочетание электронного делителя напряжения и микросхемы-стабилизатора. Первый узел состоит из 2 элементов (конденсатора 0,27 мкф и резистора 500 кОм), соединенных параллельно, к которым последовательно подключен мост из диодов, выдерживающих входное напряжение.

В качестве стабилизатора часто применяют микросхему L7812, но это не совсем правильное решение. Она является линейным устройством, регулирующим напряжение, и при изменении тока может сгореть.

Схема подключения

Лучше воспользоваться микросхемами LM317, LM338 или LM350, у которых есть защита от КЗ и перегрева. Питать их можно любым напряжением 5-35 V. К драйверу можно подсоединить 5-10 светодиодов.

Схема подключения проста:

  • плюс делителя идет на вход микросхемы (1 вывод);
  • общий провод через анод светодиода идет на минус радиодетали (среднюю ножку);
  • туда же через резистор, ограничивающий ток, подключен выход LM317 (3 контакт).

Установив вместо последнего элемента регулируемое сопротивление, можно изменять силу тока, т. е. яркость светодиодов в некоторых пределах.

Если нужно соорудить мощный прожектор, то драйвер придется модифицировать:

  • необходимо поднять питающее напряжение до 24 V;
  • установить стабилизатор с наибольшим током, а из предложенных микросхем только LM338 может выдавать 5А.

Ввиду большой силы тока следует установить ее на радиатор.

Как собрать и настроить драйвер?

В простом преобразователе для светодиодов мало элементов. Драйвер можно собрать на специальной плате, куске фанеры или провести навесной монтаж.

Устройство не требует наладки, если взять все указанные детали. Главное – правильно рассчитать резистор, ограничивающий ток.

Комплектация светильника и как его подобрать

Обычный светодиодный светильник включает в себя всего несколько элементов:

  • светодиоды;
  • корпус;
  • теплоотвод;
  • радиатор;
  • драйвер.

Если комплект стандартный, как же тогда подобрать светильник, чтобы его предустановленный драйвер прослужил как можно дольше?

Встраиваемый светодиодный светильник Kreonix с драйвером

Для исправной работы светодиодов от источника питания необходимо понизить напряжение. У каждого светильника есть следующие параметры, которые необходимо учитывать при выборе оптимального драйвера. Поговорим о них подробнее:

Мощность. Максимальная мощность у драйвера показывает, какую максимальную нагрузку он выдержит. К примеру, если на маркировке указанно (30х36)х1W, это значит, что к этому драйверу можно подключить 30 или 36 светодиодов мощностью 1 Ватт. Если мы говорим о подключении светодиодной ленты на 12-24 Вольт, то следует учесть, что источники питания для них ограничивают напряжение, а вовсе не ток.

Схема подключения светодиодных лент

А значит, мы должны внимательно следить за мощностью нагрузки, подключенной к блоку питания. В таком случае мощность драйвера ни в коем случае не должна быть ниже мощности цепи, иначе блок питания просто «сгорит».

  • Номинальные параметры тока и напряжения. Этот параметр указывается производителем на всех светодиодах, соответственно, и драйвер необходимо подбирать по этой отметке. Максимальный номинальный ток составляет 350 мА. При такой отметке в работе надо использовать источник питания с силой тока в интервале 300-330 мА. Это справедливо для любого вида подключения. Такой диапазон рабочего тока рекомендован для того, чтобы не сократить срок годности светильника, ведь теплоотвод может не выполнять свои функции в полной мере.
  • Класс герметичности и влагостойкости (защищенности). В настоящее время класс защиты определяется двумя цифрами, стоящими после IP. Первая цифра говорит о степени защиты от твердых воздействий (пыли, грязи, песка, льда). Вторая – о жидких средах (воде, веществах). Однако о требуемой температуре, при которой светильник может использоваться класс IP, ничего не сообщает. Можно или нельзя охлаждать, зависит от прочности корпуса.

Надо с не меньшей ответственностью подходить к покупке драйвера для светильника, чем к покупке самого светильника, потому что именно источник питания является гарантом долгой, исправной службы всего устройства. Если вы никак не можете выбрать подходящий драйвер для светильников, то его можно сделать своими руками. Схема сборки весьма проста.

Вариант компоновки

Разместить все элементы можно в корпусе от старой лампы дневного света. В ней уже все имеется – корпус, патрон, плата (которую можно повторно использовать). Внутри расположить все элементы блока питания и микросхему можно без особого труда. А с внешней стороны установить светодиод, который планируете запитывать от устройства. Схемы драйверов для светодиодов 220 В можно использовать практически любые, главное – понизить напряжение. Сделать это легко простейшим трансформатором.

Монтажную плату желательно использовать новую. А лучше вообще обойтись без нее. Конструкция очень простая, допустимо применить навесной монтаж. Обязательно удостоверьтесь в том, что на выходе выпрямителя напряжение в допустимых пределах, в противном случае микросхема сгорит. После сборки и подключения произведите замер потребляемого тока. Учтите, что в случае снижения тока питания увеличится ресурс светодиодного элемента.

Тщательно выбирайте схему драйвера для питания светодиодов, рассчитывайте каждый компонент конструкции – от этого зависит срок службы и надежность. При правильном подборе драйверов характеристики светодиодов останутся максимально высокими, а ресурс не пострадает. Схемы драйверов для мощных светодиодов отличаются тем, что в них большее число элементов. Зачастую применяется ШИМ-модуляция, но в домашних условиях, что называется, «на коленке», такие устройства уже сложно собрать.

Неотъемлемой частью любой качественной лампы или светильника на светодиодах является драйвер. Применительно к освещению, под понятием «драйвер» следует понимать электронную схему, которая преобразует входное напряжение в стабилизированный ток заданной величины. Функциональность драйвера определяется шириной диапазона входных напряжений, возможностью регулировки выходных параметров, восприимчивостью к перепадам в питающей сети и эффективностью.

От перечисленных функций зависят качественные показатели светильника или лампы в целом, срок службы и стоимость. Все источники питания (ИП) для светодиодов условно разделяют на преобразователи линейного и импульсного типа. Линейные ИП могут иметь узел стабилизации по току или напряжению. Часто схемы такого типа радиолюбители конструируют своими руками на микросхеме LM317. Такое устройство легко собирается и имеет малую себестоимость. Но, ввиду очень низкого КПД и явного ограничения по мощности подключаемых светодиодов, перспективы развития линейных преобразователей ограничены.

Импульсные драйверы могут иметь КПД более 90% и высокую степень защиты от сетевых помех. Их мощность потребления в десятки раз меньше мощности, отдаваемой в нагрузку. Благодаря этому они могут изготавливаться в герметичном корпусе и не боятся перегрева.

Первые импульсные стабилизаторы имели сложное устройство без защиты от холостого хода. Затем они модернизировались и, в связи с бурным развитием светодиодных технологий, появились специализированные микросхемы с частотной и широтно-импульсной модуляцией.

Правила подбора

Для обеспечения стабильности работы светодиодного светильника необходимо правильно подобрать драйвер. Делать это лучше всего на этапе планирования системы подсветки. При этом нужно учесть:

  1. Сколько и каких лед-элементов будет соединено.
  2. Какая схема подключения лежит в основе – параллельная, последовательная или последовательно по два.
  3. Суммарные характеристики монтируемых led-узлов (мощность, напряжение, сила тока).

Поэтому сначала нужно купить драйвер, а затем к нему подбирать светодиодные светильники. В противном случае на практике достаточно проблематично к уже имеющейся системе освещения подобрать преобразователь с заданными параметрами. Исключение могут составлять готовые в сборке заводские приборы подсветки, например, лампы Армстронг. Для них выпускаются специальные стабилизаторы с определенным набором характеристик.

Оптимальным подключением светодиодных элементов является последовательный способ. Независимо от расстояния в цепочке все лед-кристаллы в светильнике будут светить равномерно, так как сила тока в любой точке схемы одинакова. Однако, чем больше количество led-кристаллов, тем выше должен быть номинал напряжения у драйвера.

Последовательный монтаж электроприборов в натяжные конструкции gx53

Для начала придется подготовить необходимые инструменты. Для работы потребуется перфоратор, ножницы для металла, молоток, шуруповерт, нож, электрический щуп. Также потребуются пласкогубцы, рулетка, карандаш, уровень.

Для начала разрабатывают план размещения светильников на потолке. Можно выбрать готовую схему или сделать все по своему вкусу. Далее делают разметку. Для этого с помощью рулетки и карандаша отмечают на потолке места установки ламп.

Можно сделать разметку на полу, но она необязательная. Используя отвес или уровень, точки с потолка переносят на пол, чтобы не запутаться после натяжки полотна. Среди материалов потребуется металлическая перфолента, клемник, универсальная закладная, электрический кабель. На первом этапе подготавливают закладную. По диаметру светильника вырезается лишнее кольцо.

После вырезания лишних колец нужно обязательно примерить их к осветительному прибору.

Дальше замеряют расстояние от основного потолка до натяжной конструкции. Дальше нужно отрезать часть перфоленты и сделать из нее подвес под накладную. Также лучше сразу сделать маленький хомут для крепления кабеля.

Последовательность крепления закладной:

  1. С помощью перфоратора делается отверстие и вставляется дюбель.
  2. Дальше к потолку прикручиваются закладные. Нужно оставить не меньше 10 см запаса провода ниже накладной.
  3. Затем зачищают провода и прикручивают к ним клемники. Изоляция провода должна заходить внутрь клемника. Это предотвратит замыкание.
  4. Инструкция по установке аналогична для каждого электроприбора.

Для установки люстры потребуется усиленная закладная. Из фанеры делают толстую пластину и крепят ее на несколько подвесов. Они аналогичные, как для монтажа каркаса под гипсокартон.

После того, как натяжной потолок установлен, на него переносят разметку для светильников. Для установки светильников сначала нужно приклеить специальные термостойкие кольца. Клея при этом нужно наносить умеренно.

По центру кольца вырезают полотно. Дальше нужно подтянуть закладную. Она должна немного касаться полотна, но не давить на него. Через клемник подсоединяется светильник, и он аккуратно вставляется в закладную.

Схема подключения драйвера к светодиодам

Подключить драйвер к светодиодам просто, с этим справится каждый. Вся маркировка нанесена на его корпус. На входные провода (INPUT) подаешь входное напряжение, к выходным (OUTPUT) подключаешь линейку светодиодов. Единственно, необходимо соблюдать полярность, и на этом я остановлюсь подробнее.

Полярность входа (INPUT)

Если питающее драйвер напряжение постоянное, то вывод, помеченный знаком «+» необходимо подключить к положительному полюсу источника питания

Если напряжение переменное, то обрати внимание на маркировку входных проводов. Возможны следующие варианты:

  1. Маркировка «L» и «N»: на вывод «L» нужно подать фазу (находится при помощи индикаторной отвертки), на вывод «N» – ноль.
  2. Маркировка «~», «АС» или отсутствует: полярность соблюдать не нужно.

Полярность выхода (OUTPUT)

Здесь полярность соблюдается всегда! Плюсовой провод подключается к аноду первого светодиода, минусовой – к катоду последнего. Сами светодиоды соединяются между собой: анод последующего к катоду предыдущего.


Схема подключения драйвера к гирлянде из трех последовательно включенных светодиодов

Если у тебя очень много светодиодов (скажем, 12 шт.), то их придется разбить на несколько одинаковых групп, а эти группы соединить параллельно. При этом учти, что общая потребляемая светильником мощность составит сумму мощностей всех групп, а рабочее напряжение будет соответствовать напряжению одной группы.

При таком способе подключения токи всех четырех групп светодиодов складываются

Как выбрать драйвер?

Большая часть драйверов для LED-освещения, продаваемых на отечественном рынке, производится в Китае, стоит дёшево, и не отличается высоким качеством.

В китайских драйверах светодиодных ламп часто встречаются бракованные микросхемы, покупать их не рекомендуется. Такое устройство быстро выходит из строя, и вряд ли удастся его обменять на новое или вернуть деньги.

Советы по выбору LED-драйвера:

Берите стабилизатор тока вместе с нагрузкой. Учитывайте мощность нагрузки, которая будет подключена к драйверу

Обратите внимание на корпус. На нём должна быть указана мощность, диапазоны напряжения (входного и выходного), номинальное значение стабилизированного тока, класс влаго- и пылезащищённости

Максимальная мощность драйвера

Напряжение на выходе зависит от количества диодов в цепи и от схемы их включения. Оно должно быть больше или равно сумме энергии, потраченной каждым блоком электрической схемы.

Номинальный ток определяется мощностью элементов и их яркостью. Цель стабилизатора – обеспечить диоды нужной энергией.

Общая мощность светодиодов определяется параметрами каждого элемента, их числом и цветом. Количество потребляемой энергии считают по формуле:

P = PLED х N, где N – число диодов в цепи, PLED – мощность одного диода.

Номинал берут на 20-30 % больше расчётной мощности:

Pmax ≥ (1,2..1,3) * P.

Учитывают также цвет свечения элементов. Он влияет на выходное напряжение. Его указывают прямо на устройстве или на упаковке.

Например, имеется три светодиода мощностью по 3 Вт. Тогда общая мощность составляет 9 Вт. Рекомендуемая Pmax драйвера = 9 х 1,3 = 11,7 Вт.

Стоимость

Драйверы для LED-освещения продаются в электротехнических магазинах, в Интернете, в торговых точках, где занимаются радиодеталями. Дешевле всего обходится покупка на Интернет-площадках.

Примерные цены на стабилизаторы тока:

  • DC12V (мощность 18 Вт, входное напряжение 12 В, выходное 100-240 В) – 190 рублей;
  • LB0138 (6 Вт, 45 В, 220 В) – 170 рублей;
  • YW-83590 (21 Вт, 25-35 В, 200-240 В) – 690 рублей;
  • LB009 (150 Вт, 12 В, 170-260 В) – 750 рублей.

Микросхема PT4115 – понижающий преобразователь – стоит 150 рублей за одну штуку. Более мощные элементы стоят от 150 до нескольких тысяч рублей.

Другие характеристики

При покупке драйвера обратите внимание на такие характеристики:

  • Напряжение на выходе. Его величина зависит от числа светодиодов в светильнике, от способа подачи питания и падения напряжения на полупроводниках. На рынке имеются устройства с напряжением от 2 до 50 В и более.
  • Номинальный ток. Он должен быть достаточным для обеспечения оптимальной яркости.
  • Цвет светодиодов. Он влияет на падение напряжения.

Зависимость электрических параметров от цвета светодиодов:

ЦветПадение напряжения, ВСила тока, АПотребляемая мощность, Вт
Красный1,6-2,04

350

0,75
Оранжевый2,04-2,10,9
Жёлтый2,1-2,181,1
Зелёный3,3-41,25
Синий2,5-3,71,2

Если в источнике света три последовательно соединенных светодиода белого света мощностью 1 Вт, понадобится драйвер с напряжением 9-12 В и током 350 мА.

Падение напряжения на белых кристаллах – 3,3 В. При последовательном соединении напряжения суммируют. Получается 9,9 В, что удовлетворяет рабочий диапазон драйвера.

В зависимости от модификации, устройства используют для определённого количества светодиодов – одного, двух или более.

Например, LED-драйверы с микросхемой 9918c в светодиодной лампе подходят для управления нерегулируемыми лампами и поддерживают мощность до 25 Вт.

Назначение и сфера использования

Ввиду того, что в основе лед-элемента лежит полупроводниковый кристалл, главным параметром, влияющим на его светотехнические хаpaктеристики, в частности, яркость, является сила тока, а не напряжение, как, например, у лампочек накала. В задачу драйвера как раз и входит преобразование переменного тока в постоянный, то есть его стабилизация.

Для светодиодных светильников это крайне важно. В противном случае частота свечения их будет постоянно колeбaться и сама лампочка – мерцать. Это скажется не только на комфорте ее зрительного восприятия, но и на долговечности

В таких условиях прибор не отработает даже половины заявленного производителем срока службы

Это скажется не только на комфорте ее зрительного восприятия, но и на долговечности. В таких условиях прибор не отработает даже половины заявленного производителем срока службы.

Область применения драйверов для светодиодных светильников достаточно широка:

  1. Подсветка для улиц, парков, фасадов сооружений, мостов, памятников и прочих конструкций.
  2. Помещения различного назначения – жилые дома, цеха, склады, производственные объекты, торгово-развлекательные комплексы, офисы.
  3. Светодиодные ленты всевозможного назначения.
  4. Оптические системы трaнcпортных средств.
  5. Спецсигналы.
  6. Карманные фонари, беспроводная подсветка, и прочие автономные компактные и переносные светоисточники.

Какие есть виды

  • Среди большого разнообразия светильников есть те, которые изготавливают с прозрачным стеклом. Они дают яркий искристый свет и имеют высокий уровень светоотдачи. Отлично подойдут к светильникам со стеклянными элементами или хрусталиками. Мощность от 6 до 10 Вт. Цветовая температура варьируется от тёплого белого до нейтрального белого цвета (2700-4200 К). Например светодиодные лампы Gauss являются показателем качества и стабильности.
  • Светодиодные лампы таблетки GX53 не имеют слепящего эффекта благодаря своим высококачественным рассеивателям и драйверам. Их толщина небольшая, поэтому их удобнее устанавливать накладным образом, нежели специально сверлить отверстия в подвесном потолке. При включении отсутствуют тёмные пятна. Степени защиты – IP20 и IP54.
  • Диммируемая светодиодная лампа LED GX53 экологичная и не наносит вреда здоровью. Функция может работать в автоматическом режиме по степени освещённости или для поддержания определённого уровня освещения. Светильник может включаться или отключаться по таймеру, предусмотрено также дистанционное управление с помощью инфракрасного или радиоканала, по хлопку или с помощью голосовых команд.
  • Помимо этих видов, к светодиодам относятся также различные RGB-ленты, которые также можно дистанционно регулировать с помощью RGB-контроллера. Как и лампы-таблетки, их можно использовать для подсветки натяжных потолков. Одним из первых представителей ярких светодиодов являются SMD 3528, на его основе создавались первые ленты и диоды RGB с тремя кристаллами разных цветов. В сочетании с маленькими лампочками лучше использовать улучшенные ленты SMD 5050, а также SMD 5730 создадут прекрасное освещение с разнообразными оттенками света и цвета.

В чем отличия драйвера от блока питания

Почему же для светодиодов нельзя применять простой БП, и для чего нужен именно драйвер?

Драйвер – это устройство похожее на блок питания.

Однако, как только в него подключаешь нагрузку, он заставляет стабилизироваться на одном уровне не напряжение, а ток!

Светодиоды “питаются” электрическим током. Также у них есть такая характеристика, как падение напряжения.

Если вы видите на светодиоде надпись 10мА и 2,7В, то это означает, что максимально допустимый ток для него 10мА, не более.

При протекании тока такой величины, на светодиоде потеряется 2,7 Вольт. Именно потеряется, а не требуется для работы. Добьетесь стабилизации тока и светодиод будет работать долго и ярко.

Более того, светодиод – это полупроводник. И сопротивление этого полупроводника зависит от напряжения, которое на него подано. Изменяется сопротивление по графику – вольтамперной характеристике.

Если на нее посмотреть, то становится видно, даже если вы не намного увеличите или уменьшите напряжение, это резко, в разы изменит величину тока.

Причем зависимость не прямо пропорциональная. 

Казалось бы, один раз выставь точное напряжение и можно получить номинальный ток, который необходим для светодиода. При этом, он не будет превышать предельные величины. Вроде бы и обычный блок с этим должен справиться.

Однако у всех светодиодов уникальные параметры и характеристики. При одном и том же напряжении они могут “кушать” разный ток.

Мало того, эти параметры еще способны меняться при изменении окружающей температуры.

А температурный диапазон работы светодиодных светильников очень большой.
Например, зимой на улице может быть -30 градусов, а летом уже все +40. И это в одном и том же месте.

Работать они конечно будут, но в каком режиме светоотдачи и насколько долго неизвестно. Заканчивается такая работа всегда одинаково – выгоранием светодиода.

Кстати, при превышении температуры световой поток у светодиодных светильников всегда падает, даже у тех, которые подключены через драйвер. У некачественных экземпляров световой поток падает очень сильно, стоит им поработать около часа и нагреться.

У качественных изделий световой поток с нагревом уменьшается слабо, но все же уменьшается.

Поэтому каждому светильнику после запуска, нужно дать время, чтобы он вышел на свой рабочий режим и световой поток стабилизировался. Его изменение должно быть не более 10% от начального.

Многие недобросовестные производители хитрят и измеряют эти параметры сразу после включения, когда поток еще максимальный.

А уже эту последовательную цепочку подключают к драйверу. Данные цепочки можно комбинировать различными способами. Создавать последовательно-параллельные или гибридные схемы.

КАК ПОДОБРАТЬ ДРАЙВЕР ДЛЯ СВЕТОДИОДОВ

В первую очередь необходимо определиться с типом драйвера. Он может быть:

Линейным.

Работает очень просто – за счет резистора R, выполняющего роль ограничителя, при изменении напряжения восстанавливает необходимый ток. На представленной схеме драйвера для светодиодов можно наглядно видеть принцип линейной регулировки тока.

Недостатком здесь считается тот факт, что через резистор тоже течет ток, из-за чего мощность бесполезно рассеивается просто на нагрев окружающего воздуха. Причем чем выше входное напряжение, тем больше потери. Плюс линейной схемы – простота. Такие драйверы недорого стоят и имеют достаточную надежность.

Линейные драйверы применяются для не слишком мощных светодиодов. У диодов с большим рабочим током драйвер будет потреблять больше энергии, чем сам световой элемент.

Импульсным.

Здесь драйвер только следит за током через светодиод и управляет ключом, собранным на транзисторе. Вместо резистора в схеме присутствует кнопка КН, а еще в нее добавлен конденсатор, который заряжается при нажатии этой кнопки, заставляя светодиод загораться. Конденсатор питает диод, пока ток не опустится ниже допустимого. После этого нужно вновь нажать кнопку КН.

Эта схема более эффективна для мощных светодиодов, поскольку здесь минимальные потери энергии. Ввиду сложной конструкции импульсные драйверы дороже стоят, но их применение окупается высокой производительностью и высоким качеством стабилизации тока.

Стоит также сказать про диммируемые драйверы. Они позволяют регулировать интенсивность света, который исходит от диодов, за счет изменения входных и выходных параметров тока. Еще диммируемый драйвер может менять цвет свечения. К примеру, при меньшей мощности белые диоды будут светить желтым светом, а при большей – синим.

При подборе драйвера необходимо обращать внимание на следующие характеристики:

  • входное и выходное напряжение;
  • выходная мощность;
  • выходной ток;
  • степень защиты.

ВХОДНОЕ НАПРЯЖЕНИЕ

При подборе входного напряжения драйвера необходимо учитывать напряжение источника питания, к которому будет подключен светодиодный светильник. Напряжение источника должно входить в диапазон значений входного напряжения драйвера.

ТИП ТОКА

Он может быть переменным AC или постоянным DC. Эту информацию, как и значения входного напряжения можно найти на корпусе самого драйвера. Для подключения от розетки ток должен быть переменным, а от бортовой сети автомобиля – постоянным.

ВЫХОДНЫЕ ПАРАМЕТРЫ: НАПРЯЖЕНИЕ, ТОК И МОЩНОСТЬ

При расчете драйвера для светодиодов необходимо учитывать тип их соединения. При последовательной схеме нужно сложить напряжения всех диодов цепочки. К примеру, для 3 светодиодов с током 300 мА и рабочим напряжением 3,3 В общее напряжение будет 3 · 3,3 = 9,9 В. Ток же остается одним для всех диодов – 300 мА. Выходит, что драйвер должен иметь выходной ток 300 мА и выходное напряжение 3,3 В.

Но при выборе не стоит искать драйвер именно с такими параметрами. Чаще всего устройство рассчитано на определенный диапазон. Именно в него должны укладываться рассчитанная величина напряжения и тока.

Разберем на рассматриваемом примере, как рассчитать драйвер для светодиодов по мощности:

  • Мощность – это ток, умноженный на напряжение: P = I · U = 0,3 · 9,9 = 2,97 Вт.
  • Рассчитанная мощность диодов равна мощности, которая должна быть у драйвера. Но нужно добавить запас 10-20%. Тогда получится, что оптимальным будет драйвер с мощностью от 2,97 · 1,1 = 3,27 до 2,97 · 1,2 = 3,5 Вт.

СТЕПЕНЬ ЗАЩИТЫ

Существуют драйверы в закрытом и открытом исполнении. В первом случае устройство имеет корпус, который защищает от влаги и пыли. Открытый драйвер лучше встраивать непосредственно в корпус светильника, если тот обладает хорошей защитой от окружающей среды. Если же у светильника есть вентиляционные отверстия или он будет установлен в таком помещении, как гараж, лучше выбрать драйвер с собственным корпусом.

Расчет резистора для светодиода

Надежная работа светодиода зависит от тока, протекающего через него. При заниженных значениях, он просто не будет светить, а при превышении значения тока – характеристики элемента ухудшатся, вплоть до его разрушения. При этом говорят – светодиод сгорел. Для того чтобы исключить возможность выхода из строя этого полупроводника необходимо подобрать в цепь с включенным в нее, резистором. Он будет ограничивать ток в цепи на оптимальных значениях.

Вычисление номинала сопротивления

Для работы радиоэлемента на него нужно подать питание. По закону Ома, чем больше сопротивление отрезка цепи, тем меньший ток по нему протекает. Опасная ситуация возникает, если в схеме течет больший ток, чем положено, так как каждый элемент не выдерживает большей токовой нагрузки.

Сопротивление светодиода является нелинейным. Это значит, что при изменении напряжения, подаваемого на этот элемент, ток, протекающий через него, будет меняться нелинейно. Убедиться в этом можно, если найти вольт — амперную характеристику любого диода, в том числе и светоизлучающего. При подаче питания ниже напряжения открытия p — n перехода, ток через светодиод низкий, и элемент не работает. Как только этот порог превышен, ток через элемент стремительно возрастает, и он начинает светиться.

Если источник питания соединять непосредственно со светодиодом, диод выйдет из строя, так как не рассчитан на такую нагрузку

Чтобы этого не произошло – нужно ограничить ток, протекающий через светодиод балластным сопротивлением, или произвести понижение напряжения на важном для нас полупроводнике

Рассмотрим простейшую схему подключения (рисунок 1). Источник питания постоянного тока подключается последовательно через резистор к нужному светодиоду, характеристики которого нужно обязательно узнать. Сделать это можно в интернете, скачав описание (информационный лист) на конкретную модель, или найдя нужную модель в справочниках. Если найти описание не представляется возможным, можно приблизительно определить падение напряжения на светодиоде по его цвету:

  • Инфракрасный — до 1.9 В.
  • Красный – от 1.6 до 2.03 В.
  • Оранжевый – от 2.03 до 2.1 В.
  • Желтый – от 2.1 до 2.2 В.
  • Зеленый – от 2.2 до 3.5 В.
  • Синий – от 2.5 до 3.7 В.
  • Фиолетовый – 2.8 до 4 В.
  • Ультрафиолетовый – от 3.1 до 4.4 В.
  • Белый – от 3 до 3.7 В.

Рисунок 1 – схема подключения светодиода

Ток в схеме можно сравнить с движением жидкости по трубе. Если есть только один путь протекания, то сила тока (скорость течения) во всей цепи будет одинакова. Именно так происходит в схеме на рисунке 1. Согласно закону Кирхгоффа, сумма падений напряжения на всех элементах, включенных в цепь протекания одного тока, равно ЭДС этой цепи (на рисунке 1 обозначено буквой Е). Отсюда можно сделать вывод, что напряжение, падающее на токоограничивающем резисторе должно быть равным разности напряжения питания и падения его на светодиоде.

Так как ток в цепи должен быть одинаковым, то и через резистор, и через светодиод ток получается одним и тем же. Для стабильной работы полупроводникового элемента, увеличения его показателей надежности и долговечности, ток через него должен быть определенных значений, указанных в его описании. Если описание найти невозможно, можно принять приблизительное значение тока в цепи 10 миллиампер. После определения этих данных уже можно вычислить номинал сопротивления резистора для светодиода. Он определяется по закону Ома. Сопротивление резистора равно отношению падения напряжения на нем к току в цепи. Или в символьной форме:

R = U (R)/ I,

где, U (R) — падение напряжения на резисторе

I – ток в цепи

Расчет U (R) на резисторе:

U (R) = E – U (Led )

где, U (Led) — падение напряжения на светодиодном элементе.

С помощью этих формул получится точное значение сопротивления резистора. Однако, промышленностью выпускаются только стандартные значения сопротивлений так называемые ряды номиналов. Поэтому после расчета придется сделать подбор существующего номинала сопротивления. Подобрать нужно чуть больший резистор, чем получилось в расчете, таким образом, получится защита от случайного превышения напряжения в сети. Если подобрать близкий по значению элемент сложно, можно попробовать соединить два резистора последовательно, или параллельно.

Подбор мощности резистора

Если подобрать сопротивление меньшей мощности, чем нужно в схеме, оно просто выйдет из строя. Расчет мощности резистора довольно прост, нужно падение напряжения на нём умножить на ток, протекающий в этой цепи. После чего нужно выбрать сопротивление с мощностью, не меньшей рассчитанной.

Поделитесь в социальных сетях:FacebookTwitter
Напишите комментарий