Что такое частотный преобразователь, основные виды и какой принцип работы

Частотный преобразователь для электродвигателя: назначение и функции

Инверторный преобразователь частоты — электронное устройство для изменения частоты электрического тока и напряжения. Пределы изменений солидные. Частота может меняться от 1 Гц до 500 Гц. И это не максимум, а предел регулировки нормального частотника. Современные частотные инверторы делают на основе электроники, что позволяет точно поддерживать частоту и напряжение. При желании можно создать условия для плавного старта. Все это позволяет применять относительно недорогие электромоторы постоянного тока там, где раньше это было невозможно.

Некоторые частотные преобразователи управляются микропроцессорами

Частотный инвертор с асинхронным электромотором

Асинхронные двигатели при включении потребляют в разы больше энергии чем при штатной работе. Пусковые токи могут быть в 6-8 раз выше рабочих. Такие мгновенные скачки просаживают сеть. Напряжение резко падает, потом также скачкообразно восстанавливается. При включении особо мощного движка, сетевые параметры изменяются настолько сильно, что воспринимаются чувствительной техникой как пропадание. В результате перезапускается компьютерная техника, моргают или совсем гаснут лампы, перегорают блоки питания у котлов отопления и т.д.

Раньше остроту проблемы снижали установкой конденсаторов, которые сглаживали скачки. Но конденсаторы требуются большой емкости — по 70 мкФ на каждый киловатт мощности, плюс такую же емкость необходимо подключать для нейтрализации пускового тока. Но даже в этом случае скачки были, как и перегрузки двигателя на старте. К тому же подключение через емкость «съедало» значительную часть мощности мотора. Для компенсации потери необходимо было покупать более мощные агрегаты, ставить более мощные пусковые конденсаторы. В общем, решение не лучшее, но другого по сути, не было.

Преобразователи частоты выбирают по мощности подключаемого оборудования (должен быть запас не менее 20%) и по току (тоже с запасом)

С появлением преобразователей частоты (ПЧ) проблема решается намного эффективнее. Основная функция этого оборудования — плавный и постепенный разгон двигателя с нуля до полной мощности. На протяжении определенного промежутка времени (может задаваться, а может быть фиксированной величиной), подаваемый на двигатель ток плавно изменяет свои параметры, выводя движок на рабочий режим. Никаких перегрузок, влияния на сети. И конденсаторы не нужны, значит мощность двигателя может быть примерно на 40% меньше чем раньше (именно настолько она снижалась с конденсаторами). Точно так же, постепенно, происходит отключение. Электромотор постепенно замедляется, затем останавливается. В общем, частотный преобразователь для электродвигателя продлевает срок его эксплуатации, убирает проблему пусковых токов, стабилизирует параметры сети.

Что дает применение частотного инвертора с синхронным двигателем

Синхронные электродвигатели постоянного тока имеют несложное устройство, после выхода на требуемую скорость работают стабильно. Недостатки — сложности с пуском и невозможность регулирования частоты вращения вала. Проблему пуска давно научились обходить — делают асинхронную пусковую обмотку, которой разгоняют до нужной частоты. А вот невозможность менять скорость очень сильно ограничивает область применения. Не так много устройств, в которых нет необходимости в разных скоростных режимах работы двигателя. Это вентсистемы, кулеры.

Таблица с несколькими моделями, их параметрами и ценами

Если с синхронным электродвигателем использовать частотный преобразователь, проблема изменения скоростей решается на раз. Причем эта связка  работает настолько удачно, что японцы уже выпустили новые электропоезда на такой тяге. Стало появляться и другое подобное оборудование. Причем не только тяговое — новые электроинструменты некоторые производители стали выпускать с такими моторами. Да, стоит такое оборудование дороже, но имеет хороший КПД, работает стабильно.

Преимущества применения частотных преобразователей

Плавное регулирование скорости вращения электродвигателя позволяет в большинстве случаев отказаться от использования редукторов, вариаторов, дросселей и другой регулирующей аппаратуры, что значительно упрощает управляемую механическую (технологическую) систему, повышает ее надежность и снижает эксплуатационные расходы
Частотный пуск управляемого двигателя обеспечивает его плавный без повышенных пусковых токов и механических ударов разгон, что снижает нагрузку на двигатель и связанные с ним передаточные механизмы, увеличивает срок их эксплуатации. При этом появляется возможность по условиям пуска снижения мощности приводных двигателей нагруженных механизмов.
Встроенный микропроцессорный ПИД-регулятор позволяет реализовать системы регулирования скорости управляемых двигателей и связанных с ним технологических процессов.
Применение обратной связи системы с частотным преобразователем обеспечивает качественное поддержание скорости двигателя или регулируемого технологического параметра при переменных нагрузках и других возмущающих воздействиях.
Преобразователи частоты в комплекте с асинхронным электродвигателем может применяться для замены приводов постоянного тока.
Преобразователь частоты в комплекте с программируемым микропроцессорным контроллером может применяться для создания многофункциональных систем управления электроприводами, в том числе с резервированием механических агрегатов.
Применение регулируемого частотного электропривода позволяет сберегать электроэнергию устранением неоправданных ее затрат, которые имеют место при альтернативных методах регулирования с технологических потоков дросселированием, с помощью гидромуфт и других механических регулирующих устройств.

Экономия электроэнергии при использовании регулируемого электропривода для насосов в среднем составляет 50-75 % от мощности, потребляемой насосами при дроссельном регулировании. Это определило повсеместное внедрение в промышленно развитых странах регулируемого привода насосных агрегатов. При этом фирмы предлагают различные типы преобразователей частоты для асинхронных двигателей насосов.

Применение устройств плавного регулирования частоты вращения двигателей в насосных агрегатах, помимо экономии электроэнергии, дает ряд дополнительных преимуществ, а именно:

плавный пуск и останов двигателя исключает вредное воздействие переходных процессов (типа гидравлический удар) в напорных трубопроводах и технологическом оборудовании;

пуск двигателя осуществляется при токах, ограниченных на уровне номинального значения, что повышает долговечность двигателя, снижает требования к мощности питающей сети и мощности коммутирующей аппаратуры;

возможна модернизация действующих технологических агрегатов без замены насосного оборудования и практически без перерывов в его работе.

Основные возможности

Частотные преобразователи позволяют регулировать частоту трехфазного напряжения питания управляемого двигателя в пределах от нуля до 400 Гц.

Разгон и торможение двигателя осуществляется плавно, при необходимости по линейному закону от времени. Время разгона и (или) время торможения от 0,01 с до 50 мин.

Реверс двигателя, при необходимости с плавным торможением и плавным разгоном до заданной скорости противоположного направления.

При разгоне частотные преобразователи могут обеспечивать до 150 % увеличение пусковых и динамических моментов.

В преобразователях предусмотрены настраиваемые электронные самозащиты и защиты двигателей от перегрузки по току, перегревах, утечках на землю и обрывах линий питания двигателей.

Частотные преобразователи позволяют отслеживать с отображением на цифровом индикаторе и формированием соответствующего выходного сигнала о заданном основном параметре системы – частоте питающего двигатель напряжения, скорости двигателя, ток или напряжение двигателя, состояние преобразователя и т.п.

В зависимости от вида нагрузки двигателей в преобразователях можно формировать требуемые вольт-частотные выходные характеристики.

В наиболее совершенных преобразователях реализовано векторное управление, позволяющее работать с полным моментом двигателя в области нулевых частот, поддерживать скорость при переменной нагрузке без датчиков обратной связи, точно контролировать момент на валу двигателя.

Частотное регулирование однофазных асинхронных электродвигателей

Итак, все чаще появляются предложения частотных преобразователей, которые могут управлять однофазными асинхронными машинами. В силу того что частотники предназначены для работы с трехфазными машинами, то для регулирования оборотов однофазной машинами необходим особый вид частотного преобразователя. Это обусловлено тем, что трехфазные и однофазные машины имеют немного разный принцип работы. Давайте рассмотрим схему включения, которую предоставляет один из официальных производителей частотных преобразователей для однофазных машин:

Это схема прямого подключения. Где: Ф-фаза питающего напряжения, N-нейтральный проводник, L1, L2 – обмотки двигателя, Ср – рабочий конденсатор.

А вот схема подключения преобразователя:

Как мы можем видеть, конденсатор при включении данной схемы отключается. Обмотка L1 переключается к выходу преобразователя фазы А, а L2 к В. Общий провод подключается к выходу С. Тем самым мы фактически получили двухфазную машину. Фазовый сдвиг теперь будет реализовывать частотный преобразователь, а не конденсатор. На выходе преобразователя будет обычное трехфазное напряжение.

Данный способ частотного регулирования трудно назвать однофазным, так как при питания двигателя от сети напрямую необходимо опять восстанавливать схему с конденсатором. Более того, этот способ регулирования частоты НЕ ПОДХОДИТ для машин с пусковой обмоткой, так как сопротивление рабочей и пусковой обмотки не равны, появится асимметрия.

Можем сделать вывод, что данный вид частотного регулирования подходит не всем электродвигателям, а только конденсаторным. Более того, при такой схеме подключения необходимо провести переподключение обмоток внутри электродвигателя (в коробке выводов электродвигателя), что после переподключения не позволит работать ему от сети напрямую. Поэтому если вы собираетесь питать электродвигатель от однофазной сети через частотник, то, может быть стоит купить преобразователь, который питается от однофазной сети, а двигатель обычный, трехфазный. Это лучше с точки зрения работы самой машины, также отсутствуют переделки внутри электрической машины. Если вы собираетесь таким образом модернизировать систему, то внимательно изучите характеристики электродвигателя, преобразователя, чтоб избежать пустой траты средств или выхода из строя элементов системы.

Помимо распространенных 3-х фазных асинхронных двигателей, на рынке предлагают однофазные моторы. Чаще всего ими являются насосы и вентиляторы. Самые популярные агрегаты в промышленности и в быту. И тут возникает вопрос? Как же ими управлять и регулировать скорость. Способов великое множество. Но самый эффективный, это когда подключают преобразователь частоты для однофазного двигателя.

Из этой статьи вы узнаете:

Всем привет! С вами Гридин Семён, и в этом посте мы поговорим с вами о нюансах управления асинхронными однофазными двигателями. Какой способ управления лучше? Разберём такой вопрос — частотное управление двигателем более подробно.

Применение частотных преобразователей в холодильной технике

Затраты на холодильную установку в течение срока ее эксплуатации (35000…40000 ч) включают:

стоимость потребляемой электроэнергии (78 %);
капитальные затраты на холодильную установку (16 %);
стоимость обслуживания (6 %).*

Самыми весомыми являются затраты на электроэнергию.

Компоненты холодильной установки подбираются по максимальной тепловой нагрузке, т.е. при работе в летний период. Однако нагрузка на систему сильно колеблется в зависимости от времени года и суток.

Зимой она может снижаться до 25% от ее расчетного значения. В магазине тепловая нагрузка на холодильную систему в течение короткого периода времени может измениться от 100 до 20 %.

Лучшее техническое решение для работы в этих условиях – применение преобразователей частоты , которые в зависимости от необходимой холодопроизводительности регулируют частоту вращения электродвигателей компрессоров, вентиляторов, насосов.

Преобразователь частоты в составе холодильных установок, увеличивает срок их службы, оптимизирует энергопотребление и обеспечивает сохранение высокого качества продуктов питания. В большинстве стандартных вариантах ПЧ поставляются со встроенным ПИД – регулятором, который может управлять максимально тремя компрессорами (одним плавно и двумя другими в режиме “включен / выключен”).

Известно, что холодильный коэффициент (СОР) зависит от температур кипения и конденсации: в среднем он увеличивается на 1% с повышением температуры кипения или с понижением температуры конденсации на 1 К. Уменьшение частоты вращения коленвала приводит к уменьшению энергопотребления электродвигателем компрессора.

Преимущества частотного управления компрессором (изменение частоты обычно в диапазоне 25…90 Гц в зависимости от модели компрессора) заключаются в экономии электроэнергии до 25 %, поддержании стабильного давления кипения, плавном изменении холодопроизводительности для полного ее соответствия требуемой, увеличении ресурса компрессора (меньшее число пусков, плавный пуск), уменьшении нагрузки на сеть (плавный пуск).

Преобразователь частоты защищает электродвигатель компрессора по всем электрическим параметрам: перекос, обрыв фаз, перегрузка, перегрев. Если сравнивать капитальные затраты на холодильную установку с преобразователем частоты и без него, то очевидно, что в первом случае они будут выше, но следует помнить, что срок окупаемости преобразователя частоты для компрессора составляет 0,5…1,5 года.

Применение преобразователя частоты для электродвигателей вентиляторов обеспечивает поддержание стабильного давления конденсации в воздушных конденсаторах, т.е. более качественное регулирование перепада давления между испарителем и конденсатором, а также решает вопросы снижения шума вентиляторных систем холодоснабжения магазинов, расположенных в жилых домах. Регулирование потока воздуха в конденсаторе согласовывается с практическими потребностями (ночью меньший расход).

Температурой конденсации можно управлять при помощи регулятора частоты вращения вентиляторов или преобразователем частоты, окупаемость устройств, при применении для вентиляторов, составляет 7…14 месяцев в зависимости от мощности вентиляторов. Производительность вентилятора V, и его электрическая мощность N находятся в зависимости от частоты вращения n: поэтому преимущества частотного управления вентиляторами заключаются в существенном снижении электропотребления электродвигателями вентиляторов при понижении требуемой производительности (при производительности 50 % энергопотребление составляет 15 % от номинала), уменьшении уровня шума (при снижении скорости на 50 % шум уменьшается на 16,5 дБА), увеличении ресурса вентиляторов.

Преобразователи частоты с обратной связью

Применение частотных преобразователей с обратной связью обеспечивает точное
поддержание скорости вращения при переменной нагрузке, что во многих
задачах позволяет значительно улучшить качество технологического
процесса. У уже упомянутых выше фирм-производителей ПЧ существуют
модельные ряды, ориентированные на работу в замкнутой системе: KEB
COMBIVERT F5-Multi,
рекомендованные к применению в метало- и деревообработке,
робототехнике, системах высокоточного позиционирования и пр. Этим
требованиям также вполне удовлетворяют преобразователи частоты
Control Techniques Unidrive SP.

Преимущества частотного регулирования электродвигателя

Управление электродвигателем предполагает автоматизацию всей его работы, включая пуск, торможение, реверс и изменение скорости вращения электродвигателя. Автоматический пуск обеспечивает плавное включение пусковых сопротивлений, возможность регулирования тока в требуемых пределах, что позволяет уменьшить число ошибок, возникающих при пуске, и повышает производительность всей системы в целом. То же самое касается реверса и торможения.   Частотное регулирование позволяет устранить один из существенных недостатков электродвигателей с короткозамкнутым ротором — постоянную частоту вращения ротора электродвигателя, не зависящую от нагрузки. Частотное регулирование создает возможность управления скоростью электродвигателя в соответствии с характером нагрузки. Это в свою очередь позволяет избегать сложных переходных процессов в электрических сетях, обеспечивая работу оборудования в наиболее экономичном режиме. Частотное регулирование электродвигателя эффективно используют на промышленных предприятиях, в области энергетики, холодильной технике, коммунальном хозяйстве и других сферах. Это связано с тем, что частотное регулирование позволяет автоматизировать производственные процессы, экономично расходовать электроэнергию и другие задействованные в производстве ресурсы, повышать качество выпускаемой продукции, а также увеличивать надежность работы всей системы в целом.

Частотное регулирование также позволяет улучшить безотказность работы и долговечность технологической системы. Это обеспечивается за счет снижения пусковых токов, устранения перегрузок элементов системы и постепенной выработки моточасов оборудования. Для частотного регулирования используются частотные преобразователи со встроенными в них ПИД-регуляторами (пропорционально-интегрально-дифференциальные регуляторы), обеспечивающими точное регулирование заданных технологических параметров.   Преобразователи частоты, в отличие от других устройств регулирования скорости двигателя, таких как гидравлическая муфта, система генератор-двигатель, механический вариатор, позволяют избегать различных недостатков в работе системы. Речь идет об узком диапазоне регулирования оборудования, сложностях с его эксплуатацией, низким качеством производимых работ и неэкономичности всей системы.

Применение

Частотные преобразователи сочетают в себе уникальные качества, высокий технический уровень, надежность и невысокую цену. На базе частотных преобразователей можно создавать гибкие системы электропривода и регулирования технологических параметров. Преобразователи легко встраиваются в существующие системы практически без останова управляемого технологического процесса, легко модифицируются и адаптируются в соответствии со всеми аспектами их применения. Широкий диапазон мощностей и различные варианты систем управления позволяют подобрать решение для многих задач управления.

Частотные преобразователи имеют стандартный интерфейс и входные и выходные унифицированные сигналы для возможности их включения внешним управляющим системам более высокого уровня и подключения устройств дистанционного управления и отображения информации

Частотные преобразователи обладают электромагнитной совместимостью с питающей сетью.

Конструктивное исполнение

Существуют разные виды частотных преобразователей для двигателя. Но при этом конструктивно можно выделить отдельные типичные блоки. Данные компоненты тесно связаны между собой. Блок управления определяет работу выходного каскада.

Выпрямитель представляет собой первый модуль. Через него происходит движение тока. Здесь происходит изменение переменного тока. При помощи диодов он преобразуется в постоянный. Можно подобрать модели для однофазной сети или для трехфазного питания. В них будет отличаться число диодов.

Постоянное напряжение с высокими пульсациями выходит из выпрямителя. Чтобы сгладить пульсации применяются конденсатор и индуктивная катушка. А вот процесс преобразования параметров выходящего тока происходит в инверторе.

Конструктивно в нем содержатся транзисторы. Их 6 штук – по паре для каждой фазы. А микропроцессорная система гарантирует управление скоростными показателями роторного вращения. Все это можно увидеть на фото частотного преобразователя.

Низковольтный ПЧ на IGB транзисторах. Устройство, особенности

Рисунок 3 показывает блочную схему и функции основных узлов. После каждого из них, отображены линии выходных параметров электроэнергии. Подаваемая энергия (Uвх.), в форме синусоиды, неизменной амплитуды, частоты. Дальше — узел постоянного тока, состоящий из неуправляемого или регулируемого выпрямителя 1. Емкостного фильтра 2, с функциями сглаживания пульсации (U выпр.). Потом, сигнал Ud поступает на независимый, автономный инвертор 3, работающий с нагрузкой, которая потребляет ту же частоту.

Он преобразует одно или 3-фазный ток постоянной величины в переменный, имеет приемлемый уровень гармоник, добавленных к выходному напряжению. Собранный на полностью регулируемых полупроводниковых приборах IGBT. Сигналы СУ подсоединяют обмотку электродвигателя к соответствующим полюсам, используя силовые транзисторы. Подключение происходит в период импульсов, моделируемых по синусоиде амплитудой и частотой. Управляемые выпрямители (1) регулируют величину Ud. Функцию сглаживания выполняет электрофильтр (4).

Каков принцип частотных методов регулирования? Наглядное объяснение можно вывести из следующей формулы

Высокие показатели КПД, коэффициента мощности, перегрузочной способности достигаются при одновременном изменении частоты и напряжения. Законы изменения этих параметров напрямую зависят от момента нагрузки, который может иметь статичный, вентиляторный и обратно пропорциональный скорости вращения характер.

При постоянном моменте нагрузке напряжение на статоре будет регулироваться в пропорциональной зависимости от частоты, что хорошо видно из формулы:

Если момент нагрузки имеет вентиляторный характер, то напряжение будет пропорционально квадрату частоты питающего напряжения.

Ну и моменте нагрузки, который обратно пропорционален скорости получим:

Как видно из вышеописанного при обеспечении одновременного регулирования частоты питающего напряжения и параметров напряжения на статоре частотным преобразователем достигается плавное бесступенчатое регулирование скорости вращения вала двигателя. При этом отсутствие передач позволяет более точно регулировать скорость вращения по заданным пользователем параметрам.

Основные достоинства применения регулируемых приводов на предприятиях.

Разница в производительности и эффективности между дросселированием посредством механических средств и применением частотных преобразователей очевидна на следующем рисунке. (схема 1) Из схемы становится ясно, что возрастает экономия ресурсов, а также нивелируются проблемы, связанные с полной потерей динамической мощности потока во время закрытия заслонок, что приводит, по сути, к холостой работе двигателя. Это увеличивает экономическую эффективность частотных преобразователей.

Конструкция типового частотного преобразователя.

Принципиальной задачей преобразователя частоты является изменение параметров электрического тока, это осуществляется при помощи транзисторного выпрямления тока и преобразования его до необходимых заданных значений. Типовой частотный преобразователь состоит из трех частей:

— Звено постоянного тока. Состоит из выпрямителя и фильтрационных устройств. Звено постоянного тока принимает входной сигнал и перенаправляет его в инвертор.

— Импульсного инвертора. Силовой трехфазный инвертор обычно имеет шесть транзисторов-ключей и осуществляет преобразование тока до заданных частот и амплитуд, а затем подает его на статор. Инвертор может состоять из тиристорной схемы.

— Микропроцессорной системы управления. Управляет системами преобразования и защиты преобразователя.

Четкая синусоида выходного сигнала – результат работы IGBT-транзисторов в качестве ключей инвертора, которые работают с более высокой частотой переключения, чем устаревшие тиристоры.

Как работает частотный преобразователь?

Схема преобразователя представлена в наглядном виде на следующем рисунке. (схема 2)

Алгоритм переключения вентилей задается микропроцессором, переключение преобразует постоянное Uвх. в переменное выходное напряжение с прямоугольными импульсами. Активная составляющая токового потока асинхронного двигателя проходит через транзисторы, а реактивная – через диоды обратного тока.

И – трехфазный мостовой инвертор; В – трехфазный мостовой выпрямитель;

Самостоятельная сборка

Несмотря на то, что покупка надежного и долговечного частотного преобразователя является приоритетным вариантом, такой прибор можно собрать своими руками. Во всемирной сети выложена не одна схема и инструкция, как это сделать. В действительности, сборка своими руками может стать отличной альтернативой в ситуации, когда преобразователь нужен для небольшого бытового устройства. Самодельное устройство справится со своими задачами не хуже покупного, а будет стоить значительно дешевле. Но попытки создания подходящего преобразователя для работы мощных асинхронных двигателей лучше оставить – здесь, как ни старайся, превзойти профессиональные приборы по эффективности и качеству не получится.

Итак, давайте подробно рассмотрим, как собрать частотный преобразователь для асинхронного двигателя своими руками

Обратите внимание, что параметры домашней однофазной электросети позволяют использовать в данном случае двигатель с мощностью не больше 1 кВт

    1. Для работы двигателя нам необходима схема подключения обмоток «треугольник». Для этого нужно выводы обмоток соединить между собой последовательно, соблюдая принцип «вывод одной обмотки к вводу другой».
  1. Для того чтобы сконструировать преобразователь своими руками нам необходимы следующие компоненты:
    • любой микроконтроллер аналогичный AT90PWM3B;
    • драйвер трехфазного моста (аналог IR2135);
    • 6 транзисторов IRG4BC30W;
    • 6 кнопок;
    • индикатор.
  2. В конструкцию создаваемого нами прибора входят две платы, на одной из которых располагаются драйвер, блок питания, входные клеммы и транзисторы, а на второй – индикатор и микроконтроллер. Для соединения плат между собой воспользуемся гибким шлейфом.
  3. Для сборки частотного преобразователя необходимо использовать импульсный блок питания. Можно воспользоваться готовым устройством, или собрать его самостоятельно (не будем описывать данный процесс – это тема для отдельной статьи).
  4. Для контроля за работой двигателя необходимо подвести внешний управляющий ток, однако мы можем воспользоваться микросхемой IL300 с линейной развязкой.
    Изображение
  5. Транзисторы и диодный мост устанавливаются на общем радиаторе.
  6. Для дублирования управляющих кнопок используются оптроны ОС2-4.
  7. Установка трансформатора на однофазный преобразователь частот для двигателя небольшой мощности не является обязательным шагом. Можно обойтись токовым шунтом с сечением проводов 0,5 мм, и к нему подключить усилитель DA-1 (кстати, он же будет служить для измерения напряжения).
  8. В нашем случае мы собираем своими руками преобразователь для асинхронного двигателя мощность в 400 Вт, поэтому не станем устанавливать термодатчик – схема и без него достаточно сложна.
  9. По окончанию сборки необходимо изолировать кнопки с помощью пластмассовых толкателей. Управление кнопками осуществляется с помощью опторазвязки.

Обратите внимание, что при использовании длинных проводов, на них необходимо надеть помехоподавляющие кольца

Он позволяет регулировать вращение двигателя в диапазоне частоты 1:40.

Принцип работы частотного преобразователя.

Преобразователь частоты мы устанавливаем перед двигателем переменного тока. Начнем с того , что трехфазная система входит в преобразователь частоты и подключается к выпрямителю сам выпрямитель состоит из нескольких диодов соединенных параллельно так как ток течет вперед и назад с помощью диода мы можем пропускать ток только в одном направлении это дает нам грубый выход постоянного тока , дальше ток проходит на второй этап , который является фильтром состоящим из конденсаторов и катушки индуктивности , на этом этапе выпрямленный ток сглаживается конденсатор во время промежутков высвобождает электроны чтобы сгладить пульсацию , теперь главный постоянный ток перетекает на последнюю стадию , которая является инвертором инвертор состоит из ряда электронных переключателей известных как igbt транзисторы , которые открываются и закрываются попарно для управления потоком электричество контролируя пути продолжительность мы можем производить электричество переменного тока из источника постоянного тока.

Инвертор представляет из себя ряд транзисторов , которые являются переключателями они могут очень быстро включаться и выключаться .

Чтобы получить наши три фазы нам нужно открывать и закрывать выключатели попарно , таким образом подключенный двигатель будет испытывать переменный ток помните , что переменный ток меняет направление поэтому если мы возьмем лампу и подключим ее к некоторым переключателям и источнику постоянного тока мы сможем контролировать направление тока размыкая и замыкая переключатели в правильном порядке , лампа будет испытывать переменный ток даже , если он исходит от источника постоянного тока для трехфазного тока мы настраиваем переключатель для имитации трех фаз.

Используя контроллер мы можем применить это в случае для попарного отключения транзисторов и называется широкой импульсной модуляцией(ШИМ). Каждый сегмент имеет одинаковое количество тока , который может протекать но с помощью быстро пульсирующих переключателей мы контролируем количество тока возникающего на сегмент это приведет к среднему току , на сегменте мы можем увидеть что ток , как увеличивается так и уменьшается выдавая картину похожую на синусоидальную волну , мы можем менять выходное напряжение контролируя , как долго переключатели замкнуты , чтобы мы могли например выдавать 240 вольт или 120 вольт просто уменьшая время их открытия и закрытия , а еще мы можем контролировать частоту управляя синхронизации переключателей чтобы мы могли например выводить 60 герц 50 герц или тридцать герц.


Комбинация фаз

Подключение к электродвигателю

Для обеспечения безопасной работы, перед частотным преобразователем желательно ставить автомат защиты. Причем на трехфазную сеть нужен трехфазный автомат, а не три отдельных однофазных. Это позволит быстро отключить сразу все фазы как при перегрузке проводки, так и при перекосе на одной из фаз. Номинал автоматов выбирают по току нагрузки.

Подключение нулевого и заземляющего проводников обязательно. Тянут их от соответствующих шин напрямую — при помощи провода требуемого сечения. Для защиты человека и контроля за состоянием изоляции, в схему желательно добавить еще УЗО (устройство защитного отключения). Его включают перед автоматом. При возникновении тока утечки, УЗО одновременно разорвет фазы и ноль, полностью обесточив схему.

Схема разрабатывается в зависимости от назначения устройства с которым работает электродвигатель

При покупке дешевых моделей преобразователей, для пуска и останова может понадобиться установка специального реле, фиксирующего контакты в нужном положении. В этом случае с выхода автомата провода подаются на реле, а с его выхода идут на частотный преобразователь. Само подключение двигателей к ПЧ происходит напрямую.

Схема подключения частотного преобразователя для двух электродвигателей

Как известно, асинхронные двигатели могут работать как с однофазным, так и с трехфазным напряжением. Перед подключением движка к преобразователю частоты, надо проверить как подключены обмотки. Они должны быть:

  • «звездой» — если напряжение на выходе ПЧ трехфазное;
  • «треугольником» — если преобразователь выдает однофазное питание.

Частотный преобразователь для электродвигателя: подключение напрямую возможно не для всех двигателей

Частотный преобразователь для электродвигателя подключается при помощи кабелей (не проводов), сечение и параметры которых соответствуют параметрам устройства. Эти данные, как и рекомендации по подключению, должны быть в паспорте прибора. Так что внимательно проштудируйте мануал. Это может спасти от многих неприятностей. Все-таки могут быть особенности.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий