Правила и алгоритм расчета заземляющих устройств

Расположение заземляющих электродов

Формул расчёта заземления существует много. Целесообразно применять метод для искусственных заземлителей с геометрическими характеристиками в соответствии с ПУЭ. Напряжение питания составляет 380 В для трёхфазного источника тока или 220 В однофазного.

Нормированное сопротивление заземлителя, на которое следует ориентироваться, составляет не более 30 Ом для частных домов, 4 Ом – для источника тока при напряжении 380 В, а для подстанции 110 кВ – 0,5 Ом.

Для группового ЗУ выбирается горячекатаный уголок с полкой не менее 50 мм. В качестве горизонтальных соединительных перемычек используется полоса сечением 40х4 мм.

Определившись с составом грунта, по таблице выбирается его удельное сопротивление. В соответствии с регионом, подбирается повышающий коэффициент сезонности Kм.

Выбирается количество и способ расположения электродов ЗУ. Они могут быть установлены в ряд или в виде замкнутого контура.

Замкнутый контур заземления в частном доме

При этом возникает их экранирующее влияние друг на друга. Оно тем больше, чем ближе расположены заземлители. Значения коэффициентов использования заземлителей Kисп для контура или расположенных в ряд, отличаются.

Значения коэффициента Kисп при разных расположениях электродов

Влияние горизонтальных перемычек незначительно и в оценочных расчётах может не учитываться.

Пример расчета контура заземления

Для изготовления заземлителя обычно используется металлический уголок длиной 2,5-3 метра и размером 50х50 мм. При установке расстояние между элементами должно соответствовать их длине, или 2,5-3 метра. Показатель сопротивления для глиняного грунта будет 60 Ом*м. Согласно таблице климатических зон, значение сезонности для средней полосы составит около 1,45. Сопротивление будет равно: 60*1,45=87 Ом*м.

Пошаговый алгоритм монтажа заземления:

  1. Выкопать возле дома траншею по контуру глубиной 0,5 м.
  2. Забить в ее дно металлический уголок. Габариты его полки подобрать с учетом условного диаметра электродного элемента, который вычисляется по формуле d=0.95*p=0.995*0.05=87 Ом*м.
  3. Определить глубину залегания средней точки уголка: h=0.5*l+t=0,5*2,5*0,5=1,75 м.
  4. Подставить данное значение в ранее описанную формулу для расчета величины сопротивления одного заземлителя. Полученный параметр в итоге составит 27,58 Ом.

Необходимое число электродов можно определить по формуле N=R1/(Kисп*Rнорм). В результате получится 7. Изначально в качестве Кисп применяется цифра 1. В соответствии с табличными данными, для семи заземлительных устройств значение составит 0,59. Подставив полученную величину в формулу расчета, получаем результат: для дачного участка необходимо использовать 12 электродных элементов.

Соответственно, производится новый перерасчет с учетом этого параметра. Кисп по таблице теперь составит 0,54. Если использовать это значение в формуле, то в результате получится 13 штук. Тогда величина сопротивления электродов будет равна 4 Ома.

Исходные данные для расчета заземления

Перед началом обустройства заземления расчет которого нужно провести, необходимо заранее определиться с такими исходными данными, как:

  • Линейные размеры забиваемых в грунт стальных штырей.
  • Расстояние между ними (шаг монтажа).
  • Допустимая глубина погружения.
  • Характеристики почвы в месте обустройства заземления.

При его определении важно помнить о том, что он сильно отличается от места к месту и в значительной степени зависит от климатической зоны, к которой относится регион. Помимо этих данный придется учесть конфигурацию и материал заготовок, из которых сваривается готовое сооружение (либо обычный стальной уголок, либо медная широкая полоска). Согласно ПУЭ минимальные размеры элементов для треугольной или линейной контурной конструкции должны быть:

Согласно ПУЭ минимальные размеры элементов для треугольной или линейной контурной конструкции должны быть:

  • полоса – сечение 48 мм2;
  • уголок 4х4 мм;
  • круглый брусок – сечение 10 мм2;
  • стальная труба диаметром 2,5 см со стенками толщиной не менее 3,5 мм.

В соответствие с этими требованиями ее выбирают не менее 2-2,5 метра. Расстояние между соседними точками погружения стержней должно быть кратным их длине. В зависимости от размеров и конфигурации площадки для обустройства ЗУ элементы конструкции устанавливаются либо в ряд, либо в виде правильного треугольника (иногда для этого выбирается квадратная форма). Используемые в этом случае методики расчета различных вариантов ЗУ ставят своей задачей получение данных по числу стержней и параметрам соединительной полосы (ее длины и сечения).

1.7.119

Главная заземляющая шина может быть выполнена
внутри вводного устройства электроустановки напряжением до 1 кВ или отдельно от
него.

Внутри вводного устройства в качестве главной заземляющей
шины следует использовать шину PE.

При отдельной установке главная заземляющая шина должна
быть расположена в доступном, удобном для обслуживания месте вблизи вводного
устройства.

Сечение отдельно установленной главной заземляющей шины должно
быть не менее сечения PE (PEN)-проводника питающей
линии.

Главная заземляющая шина должна быть, как правило, медной.
Допускается применение главной заземляющей шины из стали. Применение
алюминиевых шин не допускается.

В конструкции шины должна быть предусмотрена возможность
индивидуального отсоединения присоединенных к ней проводников. Отсоединение
должно быть возможно только с использованием инструмента.

В местах, доступных только квалифицированному персоналу
(например, щитовых помещениях жилых домов), главную заземляющую шину следует
устанавливать открыто. В местах, доступных посторонним лицам (например,
подъездах или подвалах домов), она должна иметь защитную оболочку – шкаф или
ящик с запирающейся на ключ дверцей. На дверце или на стене над шиной должен
быть нанесен знак .

Виды заземлителей: тонкости их использования

Каждый вид электрода имеет конкретное назначение, которое мы и рассмотрим:

Глубинный заземлитель – конструкция, предусматривающая сложный монтаж, но имеющая массу преимуществ. Из особенностей такого вида электродов, можно выделить, что их монтаж занимает значительно меньше места, чем стандартный контур заземления. Доказана эффективность этого проводника в местах с наименьшим удельным сопротивлением почвы. На сегодняшний день, в нормативных актах прописывается, что можно применять подобный элемент в подвале и цокольном этаже.

Для домашних условий идеальным решением остается использование вертикальных заземлителей, чего не скажешь о промышленном направлении. Здесь, наоборот целесообразна установка анодного электрода. Его применяют для защиты трубопроводов и подземных сооружений. По сути материал достаточно надёжный и устойчив к воздействию коррозии.

Влияние почвы на сопротивление Rз

Практически доказано, что сопротивление заземляющего устройства в значительной степени определяется состоянием грунта в месте расположения заземлителя. В свою очередь, характеристики почвы в зоне проведения защитных работ зависят от следующих факторов:

Влажность почвы на участке проведения работ;

  • Наличие в почве каменистых составляющих, в которых обустроить заземление попросту невозможно (в этом случае приходится выбирать другое место);
  • Возможность искусственного увлажнения грунта в особо засушливые летние периоды;
  • Химический состав почвы (наличие в ней солевых составляющих).

В зависимости от состава грунта, он может быть отнесён к тому или иному виду (смотрите фото ниже).

Различные виды почвы

Исходя из особенностей формирования сопротивления заземлителя, предполагающих его снижение при увлажнении и повышении солевой концентрации, в случае крайней необходимости в грунт искусственно вводятся порции влажного химиката NaCl.

Хорошие грунты с точки зрения обустройства заземления – это суглинистые почвы с высоким содержанием торфяных составляющих и солей.

Что мы должны иметь по окончанию расчета

После проведения вычислений по используемым формулам удается получить точное сопротивление заземляющего устройства искусственного типа. Измерить данные показатели у естественных систем часто не удается из-за невозможности получить точные типоразмеры закопанных коммуникаций, колей, кабеля или уже установленных металлических конструкций.

По окончании расчетов удается получить точное количество стержней и полос для контура, которые помогут создать надежную систему защиты для используемого оборудования и всего объекта в целом. Расчеты помогут также установить точную длину соединяющих стержни полосок. Основным результатом всех проведенных вычислений станет получение итогового значения свойств используемых в созданном контуре проводников, которое определяет силу проходящего по ним электрического тока. Это важнейший норматив ПЭУ, который имеет определенные значения для сетей с разными показателями напряжения.

Определение значения требуемого нормируемого сопротивления

Данное значение для группового заземлителя регламентируется ПУЭ, Глава 1.7 «Заземление и защитные меры электробезопасности» (если заземляющее устройство является общим для установок на различное напряжение, то за расчетное сопротивление заземляющего устройства принимают наименьшее из допустимых):

1.7.101. Сопротивление заземляющего устройства, к которому присоединены нейтрали генератора или трансформатора или выводы источника однофазного тока, в любое время года должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока.

Это сопротивление должно быть обеспечено с учетом использования естественных заземлителей, а также заземлителей повторных заземлений PEN или PE проводника ВЛ напряжением до 1 кВ при количестве отходящих линий не менее двух. Сопротивление заземлителя, расположенного в непосредственной близости от нейтрали генератора или трансформатора или вывода источника однофазного тока, должно быть не более 15, 30 и 60 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. При удельном сопротивлении земли ρ > 100 Ом • м допускается увеличивать указанные нормы в 0,01ρ раз, но не более десятикратного.

Заземляющие устройства электроустановок напряжением до 1 кВ в сетях с изолированной нейтралью

1.7.104. Сопротивление заземляющего устройства, используемого для защитного заземления открытых проводящих частей, в системе IT должно соответствовать условию:

R ≤ Uпр/I,

где R — сопротивление заземляющего устройства, Ом;

Uпр — напряжение прикосновения, значение которого принимается равным 50 В (см. также 1.7.53);

I — полный ток замыкания на землю, А.

Как правило, не требуется принимать значение сопротивления заземляющего устройства менее 4 Ом. Допускается сопротивление заземляющего устройства до 10 Ом, если соблюдено приведенное выше условие, а мощность генераторов или трансформаторов не превышает 100 кВ• А, в том числе суммарная мощность генераторов или трансформаторов, работающих параллельно.

Заземляющие устройства электроустановок напряжением выше 1 кВ в сетях с изолированной нейтралью

1.7.96. В электроустановках напряжением выше 1 кВ сети с изолированной нейтралью сопротивление заземляющего устройства при прохождении расчетного тока замыкания на землю в любое время года с учетом сопротивления естественных заземлителей должно быть

R ≤ 250/I,

но не более 10 Ом, где I — расчетный ток замыкания на землю, А.

В качестве расчетного тока принимается:

  • в сетях без компенсации емкостных токов — ток замыкания на землю;
  • в сетях с компенсацией емкостных токов: для заземляющих устройств, к которым присоединены компенсирующие аппараты, — ток, равный 125% номинального тока наиболее мощного из этих аппаратов;

для заземляющих устройств, к которым не присоединены компенсирующие аппараты, — ток замыкания на землю, проходящий в данной сети при отключении наиболее мощного из компенсирующих аппаратов.

Расчетный ток замыкания на землю должен быть определен для той из возможных в эксплуатации схем сети, при которой этот ток имеет наибольшее значение.

Схемы заземления, какую выбрать

Перед тем как сделать заземление у себя в частном доме потребуется ознакомиться с особенностями обустройства и функционирования защитных систем, предполагающих использование одной из известных схем. Для этого необходимо учесть следующие важные моменты:

  1. При организации электроснабжения любого современного объекта на него помимо нулевой и фазной шины должен заводиться так называемый «заземляющий» проводник.
  2. Его основное назначение – защитить людей от опасного потенциала, попадающего на корпус приборов при нарушении изоляции проводников.
  3. Для этого заземляющая шина еще на стороне подстанции соединяется со специальным элементом заземления (контуром), который обустраивается непосредственно на ее территории.

При этом рассматриваемые здесь устройства заземления в доме принято относить к категории «повторных» ЗУ, дублирующих станционные на случай обрыва нейтрали (совмещенного PEN проводника).

По способу заземления нулевой жилы трансформатора на подстанции и объекта на стороне потребителя все используемые схемы делятся на следующие две категории:

  1. Во-первых – это системы с глухозаземленной нейтралью, представляющие собой наиболее распространенный способ заземления трансформаторов, вторичные обмотки которых соединены «звездой». В этом случае их средняя точка постоянно подключена к контуру.
  2. Во-вторых, нередко применяются схемы с так называемой «изолированной» нейтралью, в которых средняя точка не соединяется с землей или подключена к ней через высокое сопротивление прибора защиты.

а) сеть с глухозаземленной нейтралью, б) сеть с изолированной нейтралью, соединенной с землей через разрядник

Их применение связано с необходимостью изолировать токоведущие части оборудования от заземляющего контура. Глухозаземленную нейтраль согласно правилам устройства электроустановок принято обозначать как «TN». Одним из самых распространенных способов защитного использования такой нейтрали – подсоединение с ней металлических корпусов приборов посредством отдельной шины.

Естественное заземление

Во времена, когда перечень электробытовой техники в жилище ограничивался одним телевизором, холодильником и стиральной машиной, заземляющие устройства использовались редко. Защита от утечки тока возлагалась на естественные заземлители, такие как:

  • неизолированные металлические трубы;
  • обсадка водяных скважин;
  • элементы металлических заборов, уличные фонари;
  • оплетка кабельных сетей;
  • стальные элементы фундаментов, колонн.

Лучший вариант естественного заземления – водопроводная магистраль из стали. За счет своей большой длины водопроводы сводят к минимуму сопротивление току растекания. Эффективность водопроводов достигается еще и благодаря их прокладке ниже уровня сезонного промерзания, а потому на их защитные качества не влияют ни жара, ни холод.

Металлические элементы подземных железобетонных изделий подходят для заземлительной системы, если соответствуют следующим требованиям:

  • имеется достаточный (по нормам Правил устройства электроустановок) контакт с глинистой, супесчаной или влажной песчаной основой;
  • при строительстве фундамента арматура на двух или более участках была выведена наружу;
  • металлические элементы имеют сварные соединения;
  • сопротивление арматуры соответствует регламенту ПУЭ;
  • имеется электросвязь с шиной заземления.

Эффективность функционирования естественного заземления устанавливается на основе измерений, проведенных уполномоченным лицом (представителем Энергонадзора). На основе проведенных замеров специалист даст рекомендации относительно необходимости установки дополнительного контура к естественному контуру заземления. Если естественная защита отвечает требованиям нормативов, Правила устройства электроустановки указывают на нецелесообразность дополнительного заземления.

Монтаж заземляющего устройства

Определившись с материалом и количеством компонентов, переходим к описанию того, как сделать заземление. Сначала выкапываем траншею, затем забиваем вертикальные электроды и соединяем их с помощью горизонтального заземлителя.

В данном случае обеспечивают надёжный контакт. Для этого применяют специальную пасту. Кроме того, помнят об электрохимических потенциалах.

После соединения всех электродов между собой до подключения к ГЗШ замеряют общее сопротивление. Покупать специальный прибор для одного замера экономически невыгодно, поэтому рекомендуем обратиться в специализированную организацию.

Результаты проведённых замеров могут оказаться больше расчётных. В таком случае продолжают траншею и добавляют электроды. После увеличения ЗУ повторяют замеры.

Как рассчитать контур заземления для частного дома?

Что важно знать?

Заземление дома необходимо для того чтобы снизить напряжение соприкосновения до неопасного показателя. Благодаря ему потенциал направляется в землю и защищает человека от поражения электрическим током. В ПУЭ указывается, что частный дом должен иметь сопротивление растекания при трехфазном питании 4 и 8 Ом (первое значение при 380 В, второе – 220 В), а при однофазном – 2 и 4 Ом.

Электроды изготавливаются из меди, оцинкованной и черной стали. Профили сечения указаны на рисунке ниже:

Методика расчета

Расчет делается исходя от того, какое заземление используется. В формуле указывается количество используемых заземлителей, их длину и толщину. Также все зависит и от параметров грунта, который окружает частный дом.

Существует несколько вариантов установки заземлителей. Это такие методы, как:

  1. Вертикальный. Делиться на два подвида: тот, что устанавливают у поверхности и тот, что монтируют с заглублением (предпочтительно на 70 см).
  2. Горизонтальный. Делиться на два подвида: с установкой по поверхности грунта и в траншее (предпочтительно 50 – 70 см).

Заземление включает в себя горизонтальные и вертикальные стержни, расчет которых осуществляется отдельно. В зависимости от длинны стержня, берется дистанция между ними, т. е. размер а должен быть кратен размеру L. Пример: а = 1xL; а = 2xL.

Формула, по которой делается расчет одиночного вертикального стержня, который не закапывается в почву, выглядит следующим образом:

p – удельное сопротивление почвы;
l – длина заземлителя;
D – диаметр электрода.

Расчет заземлителя, который монтируют с углублением на 70 см (h = 0,7 м) в землю, производится по следующей формуле:

Горизонтальное заземление у поверхности рассчитывается по формуле:

Примечание: формула предоставлена для прямоугольного и трубного профиля с шириной полки b, для полосы считать d нужно с учетом d= 0.5b.

Расчет электрода, который располагается в траншее 70 см (h = 0,7 м), производится по следующей формуле:

Для полосы шириной b необходимо считать d =0,5 b.

Расчет суммарного сопротивления заземлителя осуществляется следующим образом:

n – численность вертикальных заземлителей;
Rв и Rг – сопротивления заземленных элементов;
nв – коэффициент употребления заземлителей.

Этот коэффициент берется из таблицы:

Методом коэффициента использования можно определить, какое воздействие проявляют друг на друга токи растекания с заземлителей при их разнообразном размещении. Например, если их объединить параллельно, то токи растекания электродов имеют взаимное действие на каждый элемент. Поэтому при минимальной дистанции между элементами, сопротивление заземленного контура будет значительно больше.

Заземление происходит по нескольким схемам расположения электродов. Самой распространенной считается схема в виде треугольника. Но это не обязательная конфигурация электродов. Также их можно разместить в одну линию или последовательно по контуру. Такой вариант удобен в том случае, когда для обустройства системы был выделен небольшой узкий участок на земле.

Дополнительно вы можете проверить результат, воспользовавшись онлайн-калькулятором для расчета заземления!

Заземляющий проводник соединяет с электрическим щитом сам контур конструкции. Ниже приведены схемы:

Частный дом требует серьезный расчетов для надежной электробезопасности. Поэтому чтобы не допустить ошибки в интернете существуют специальные программы для расчета заземления, с помощью которых можно точно и быстро рассчитать нужные значения!

Формулы для расчета заземления частного дома. Как рассчитать сопротивление вертикального и горизонтального заземлителя. Пример расчетных работ в программе.

Метод определения геометрической фигуры

Как мы уже говорили выше, контур заземления может повторять любую из геометрических форм, если его размеры позволяют располагаться на отведенной площади. В последнее время мастера практикуют прямолинейный контур заземления, так как он считается довольно простым в монтаже.

Распространенной считается та, которая имеет форму равнобедренного треугольника. В этой ситуации высокое напряжение успешно рассеивается в грунте, а электроды не мешают друг другу

Обращаем внимание новичков, забивать электроды необходимо на равномерной высоте, чтобы не создавалось дополнительного сопротивления

Выбор контура

Перед расчетом контура Вам предоставляется возможность выбрать один из следующих вариантов заземляющих устройств:

  • Треугольная конструкция, параметры которой определяются еще на этапе проектирования.
  • Линейное сооружение протяженного типа, монтируемое по периметру защищаемого объекта.
  • Модульно-штыревая заземляющая конструкция.

Каждый из перечисленных выше способов сборки и последующего монтажа заземляющих устройств нуждается в подробном рассмотрении.

Треугольная конструкция

Этот вариант изготовления ЗК – самый известный и распространенный среди профессионалов и любителей. Для обустройства такой конструкции потребуется приготовить следующие элементы:

  • Двухметровые металлические стержни (арматурные прутья) в количестве 3-х штук.
  • Столько же стальных перемычек, предназначенных для объединения прутьев в единую конструкцию.
  • Медная шина, необходимая для соединения ЗК с точкой сбора жил от заземляемого оборудования в распределительном шкафу (ГЗШ – главная заземляющая шина).

Плоскость сварного контура с уже вбитыми в землю штырями при обустройстве ЗУ должна располагаться на глубине примерно 30-60 см.

Линейный контур

Линейное заземление выбирается в случае, когда к защитному сооружению требуется подключить несколько единиц оборудования, размещенных на удалении один от другого. Оно состоит из нескольких вбитых в землю штырей (3), расположение которых относительно друг друга выбирается из расчетных данных.


Линейная схема контура заземления для частного дома

От собранной по этой схеме конструкции, как и в случае с треугольником в сторону распределительного щитка с ГЗШ делается отвод (2). Перед тем как рассчитать такой ЗК – следует учесть, что общее число штырей ограничено взаимным влиянием аварийных токов, протекающих в каждом одиночном заземлителе.

Модульно-штыревое заземление

Модульный тип ЗУ применяется в ситуациях, когда площадь на участке перед домом ограничена небольшими размерами и допускается обустройство одной штыревой конструкции.


Схема монтажа одиночного заземляющего электрода

Она содержит в своем комплекте следующие элементы:

  • Стальной стержень полутораметровой длины с медным покрытием и имеющейся на
  • рабочей части резьбой.
  • Специальную муфту из латуни, обеспечивающую получение резьбового соединения вертикально вбиваемого штыря с заземляющим отводом.
  • Латунные зажимы особой конструкции, гарантирующие надежное сочленение металлических штырей с соединительной полосой.
  • Наконечники для самих заземляющих стержней.
  • Насадку с ударной площадкой, позволяющую передавать импульс от забивающего инструмента (вибромолота).


Комплект модульно-штыревого заземления

Защитная смазка сохраняется долгое время и не растекается при нагревании штырей и других элементов такого ЗУ. Входящая в состав антикоррозийная лента устойчива к воздействию агрессивных сред и защищает от разрушения всю конструкцию в целом.

Подробно о монтаже модульно-штыревого заземления читайте на этой странице.

Расчёт заземляющих устройств в установках с незаземлённой нейтралью

В установках 6—35 кВ сопротивление заземляющего устройства в любое время года должно быть(1) но не более 10 Ом.

Если заземляющее устройство одновременно используется для установок до 1000 В, то

(2)
но не более 4 Ом, где /3 — расчётный ток замыкания на землю, А.
Заземляющие устройства электроустановок с незаземлённой нейтралью выполняется в виде прямоугольника из горизонтальных и вертикальных заземлителей. Расчёт таких устройств можно вести методом коэффициента использования, принимая грунт однородным по глубине. Расчёт производится в следующем порядке.

  1. Определяется расчётный ток замыкания на землю. Приближённо для воздушных сетей

(3) для кабельных сетей(4) где U — линейное напряжение, кВ;
I — длина трёхфазных электрически связанных линий данного напряжения, км.

  1. Определяется сопротивление естественных заземлителей (как правило, путём замера). Сопротивление искусственных заземлителей.

(5) Если сопротивление естественных заземлителей неизвестно, то они не учитываются, т.е. принимаются В качестве искусственных заземлителей принимаются вертикальные стержни или трубы длиной 1=3—5 м, диаметром d= 12— 20 мм или уголок.
При использовании угловой стали с шириной полки h эквивалентный диаметр заземлителя принимается d=0,95h. В качестве горизонтальных заземлителей используются стальные полосы 40×4 мм.

  1. Определяется расчётное удельное сопротивление грунта

(6) где р — удельное сопротивление грунта, приведённое в табл. 1, Ом-м;
кс — коэффициент сезонности, учитывающий промерзание и просыхание грунта. Для вертикальных электродов длиной 3—5 м fcc=1,45-1,15, для горизонтальных электродов длиной 10—15 м кс=3,5-2,0.

Грунт

р, Ом-м

Грунт

р, Ом-м

Песок

400-1000

Торф

20

Супесь

150—400

Чернозём

10-50

Суглинок

40-150

Известняк

1000—2000

Глина

8-70

Скалистый

Садовая земля

40

Грунт

2000-4000

  1. Определяется предварительная конфигурация заземляющего устройства с учётом его размещения на отведённой территории, причём расстояние между вертикальными заземлителями принимается не менее их длины. По плану заземляющего устройства определяются предварительно количество вертикальных заземлителей пв и длина горизонтальных 1г.
  1. Определяется сопротивление одного вертикального заземлителя (стержня), Ом

(7) где t— глубина заложения, равная расстоянию от поверхности земли до середины заземлителя, м. te=0,7 м; te=0,7+1(2.

  1. Определяется сопротивление вертикальных заземлителей

(7.8) где г|в — коэффициент использования вертикальных заземлителей, зависит от отношения расстояния между ними к длине all и количества пв (приведены в табл. 2).

  1. Определяется количество горизонтальных заземлителей (соединительные полосы контура), Ом

(9) где 4 — длина полосы, м; b — ширина полосы, м; t — глубина заложения, м.
С учётом коэффициента использования сопротивления полосы г|г, принимаемого по табл. 2:

Таблица 2.

Число вертикальных заземлителей пв

Отношение а/1

1

2

3

Л«

Лг

Чв

Лг

Л*

Лг

4

0,69

0,45

0,78

0,55

0,85

0,70

6

0,61

0,40

0,73

0,48

0,80

0,64

10

0,55

0,36

0,69

0,43

0,76

0,60

20

0,47

0,27

0,63

0,32

0,70

0,45

40

0,41

0,23

0,58

0,29

0,66

0,39

60

0,39

0,18

0,55

0,27

0,65

0,36

80

. 0,38

0,15

0,53

0,25

0,62

0,34

100

0,36

0,14

0,52

0,24

0,61

0,33

  1. Определяется необходимое сопротивление вертикальных заземлителей с учётом использования соединительной полосы

(11)

  1. Определяется уточнённое количество вертикальных заземлителей

(12) где г\’в — уточнённое значение коэффициента использования.
На основе результатов расчёта уточняется конфигурация заземляющего устройства.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий