Коэффициент использования светового потока: методы расчета

Выбор светильников

Поговорим теперь о том, какие параметры важны при выборе светильников для промышленных объектов.

– характеристики блока питания

Драйвер отвечает за работоспособность (или нет) светильника в условиях нестабильности электросети – при скачках напряжения и импульсных помехах. Блоки питания известных мировых производителей компенсируют эти колебания и не дают им влиять на качество освещения в то время как светильники с рабочим напряжением 220В при перепадах и скачках могут начать мерцать, либо вообще выйти из строя.

Светильники с блоком питания, чувствительным к качеству электросети, рекомендуется использовать совместно со стабилизатором напряжения.

– светоотдача

Светоотдача современных светодиодов достигает 160лм/Вт. Чем выше этот показатель, тем меньше мощности требуется для обеспечения требуемого светового потока/освещенности. При этом увеличивается стоимость светильника. Оптимальное соотношение цена/качество у светодиодов со светоотдачей 120-130лм/Вт – вы не переплачиваете за технологические новинки и имеете существенную экономию производственных мощностей (если брать для сравнения безымянные китайские светодиоды с реальным световым потоком 70-90лм/Вт).

Имя и репутация производителя светодиодов – гарантия того, что светодиоды выработают весь заложенный ресурс в 75 000 – 100 000 часов, а не выйдут из строя через пару лет из-за перегрева или деградации люминофора.

– IP. Степень защиты от пыли и влаги

Для сухих непыльных помещений (рабочие кабинеты, коридоры, холлы и т.д.) достаточное значение IP 20…40 – т.е. в корпус нельзя засунуть палец/кабель/болт, нет защиты от воды.

В цехах, как правило, устанавливают светильники с  IP65 и выше, что гарантирует непроницаемость корпуса для пыли и мелких частиц и защиту от водяных брызг и струй.

Для уличного освещения требуются абсолютно герметичные светильники с IP67-68, работающие в любых погодных и климатических условиях.

– пульсация светового потока

Этот параметр отвечает за низкую нагрузку на зрение работников и отсутствие стробоскопического эффекта (иллюзия неподвижности движущихся частей машин и механизмов и наоборот).

Пульсация светового потока светодиодных светильников составляет менее 5%. В инструментальных цехах рекомендуется установка светильников с коэффициентом пульсации <1%.

Сейчас на рынке представлен огромный ассортимент осветительных приборов. Светодиодные светильники – наиболее эффективная, экономичная и экологичная замена газоразрядных ламп

При выборе светильников не стоит руководствоваться исключительно ценой – обратите внимание на то, какие комплектующие использует производитель, и какую гарантию дает на готовое изделие. Качественные светодиодные светильники раз и навсегда решат проблему освещения любого промышленного объекта.

В нашем каталоге имеются светильники для любого объекта, а также вы сможете подобрать качественные светильники с помощью наших специалистов! 

Освещенность и требования стандартов

Там, где в дневное время недостаточно солнечного света, а также в вечерние и ночные часы, пользуются искусственными источниками. На предприятиях каждое рабочее место проходит аттестацию на соответствие допустимым санитарным нормам. В эти нормы укладывают и уровень освещённости. Неправильное освещение или его недостаток влияет на здоровье работников.

Основным нормативным документом, регламентирующим стандарты этого параметра, выступает СНИП 23-05-95 – это нормы, принятые к исполнению в 1995 году. Откорректированный его вариант в виде СП 52.13330.2011 от 20.05.2011 г. действует и поныне.

В перечне отражены границы степени освещённости для помещений:

  • производственных и складских;
  • рабочих площадок вне зданий;
  • жилых и общественных помещений;
  • уличного освещения населённых пунктов;
  • архитектурных подсветок;
  • витринной и рекламной иллюминации;
  • специального освещения.

Важно! Вреден как недостаток, так и избыток света. Яркие пятна люминесцентных реклам и витринных окон, выполненных с превышением требований, загрязняют световой фон улиц. Освещённость

Освещённость

Выбор метода расчета

Имея представление, каким образом производится расчет, давайте рассмотрим, какой из способов выбрать конкретно для вашего случая. Ведь различные методы расчета предназначены для различных помещений и условий.

Итак:

Начнем с метода коэффициента использования светового потока. Данный способ нашел достаточно широкое применение. Преимущественно его применяют для расчета общего освещения в помещениях, не имеющих перепадов высот по горизонтали. Кроме того, данный способ не сможет выявить затененные участки, и произвести расчет для них.


Выбираем метод расчета освещенности

  • Для этих целей существует точечный метод. Он применяется для расчета местного освещения, затененных участков и помещений с перепадом высот, а также наклонных поверхностей. Но вот общее равномерное освещение таким методом посчитать достаточно сложно — ведь он не учитывает отраженные и некоторые другие составляющие.
  • А вот способ удельной мощности, является одним из наиболее простых. Но в то же время он не дает точных значений, и преимущественно используется в качестве приближенного. С его помощью определяют приближенное количество светильников и их мощность.

Кроме того, данный расчет позволяет определить, какова приближенная цена монтажа и эксплуатации данной осветительной системы.

Расчёт освещения

Расчёт освещения

Метод коэффициента использования

Метод коэффициента использования даёт возможность опреде­лить световой поток ламп, необходимый для создания заданной средней освещённости при общем равномерном освещении с учётом света, отражённого стенами и потолком.

Расчётные формулы:

где F —световой поток ламп, лм;

Е — минимальная освещённость, лк;

k — коэффициент запаса;

η — коэффициент использования светового потока ламп (в долях единицы), т. е. отношение потока, падающего на расчётную поверхность, к суммарному световому потоку всех ламп;

S —площадь помещения, м2;

z — отношение средней освещённости к минимальной (коэффи­циент z вводится только при расчёте минимальной осве­щённости);

п — число светильников.

Коэффициент использования зависит от характеристики светиль­ника (светораспределения и к. п. д.), размеров помещения и коэф­фициентов отражения стен и потолков.

Значения коэффициентов использования для различных све­тильников с лампами накаливания находятся по таблицам, имею­щимся в каталогах на осветительные приборы.

Коэффициенты, отражения стен ρc и потолка ρn приведены в следующей таблице:

Размеры помещения характеризуются следующим показателем (индексом) помещения:

где h — расчётная высота подвеса светильника над рабочей по­верхностью, м;

S —площадь помещения, м2;

А и В — стороны помещения, м.

Величина коэффициента z зависит от типа светильника и отно­шения L к h; L — расстояние между светильниками, м; h — расчётная высота подвеса светильника, м.

Значения коэффициентаz

Расчёт освещения но методу коэффициента использования про­изводится в следующем порядке:

1) находим по таблице нормативную освещённость для данного помещения;

2) выбираем тип и число светильников;

3) определяем индекс помещения iи коэффициенты отражения потолка (ρп ) и стен ( ρс).

4) находим коэффициент z (только при расчёте на минималь­ную освещённость);

5) определяем коэффициент использования светового потока для принятого типа светильника;

6) вычисляем световой поток F одной лампы в лм и по нему выбираем лампу, световой поток которой близко подходит к рас­чётному.

Пример расчёта

Дано: конторское помещение площадью 20 × 6 м, высотой 3,2 м; потолок побелённый, стены светлые, окна без штор.

Расчётная высота подвеса светильника h=2 м, напряжение се­ти 220 в; коэффициент запаса k=1,3.

1) Для конторского помещения E = 75 лк.

2) Берём 16 светильников типа «Люцетта» цельного стекла, рас­полагаемые в два ряда; расстояние между светильниками равно 3 м.

3) Находим индекс помещения

По таблице определяем коэффициенты отраже­ния потолка и стен: ρп =70%; ρс=50%.

4) При отношении L : h = 1,6 коэффициент z = 1,2.

5) Зная i, ρn и ρс находим для светильника «Люцетта» коэффи­циент использования η = 0,5.

6) Определяем световой поток одной лампы

По таблице выбираем лампу накаливания мощ­ностью 150 вт, имеющую световой поток 1845 лм.

Метод удельной мощности

Метод удельной мощности — наиболее упрощённый способ рас­чёта освещения.

Удельная мощность, т. е. мощность ламп, отнесённая к единице площади, вт /м2 — важный показатель осветительной установки, он может служить, в однотипных условиях, критерием для определе­ния мощности ламп.

Инженером Кноррингом были составлены таблицы значений удельной мощности в зависимости от освещённости, типа светильни­ка, высоты подвеса и площади помещения для напряжения сети 220 в и коэффициента запаса k=1,3.

Пользуясь таблицами, можно подсчитать установленную мощ­ность осветительной установки, для чего значение удельной мощно­сти (р), найденное для конкретных условий, необходимо умножить на площадь помещения.

Мощность каждой лампы находят делением общей установлен­ной мощности на принятое количество ламп.

Точечный метод

Точечный метод расчёта, основанный на известном соотноше­нии между освещённостью Е и силой света I, довольно кропотлив и применяется в основном только для определения минимальной освещённости локализованного и местного освещения, для опреде­ления освещённости ответственных помещений и для проверочные расчётов.

Светодиодная лампа: конструкция и основные технические характеристики

Светодиодная лампа — источник света, излучение которого осуществляется за счет использования в конструкции нескольких светодиодов, соединенных в одну цепь. В отличие от других разновидностей ламп в ней не используется вольфрамовая нить накаливания, различные газы, ртуть и другие компоненты, опасные для жизни человека. Она экологически чистое устройство, не выделяющее вредных веществ во время работы и выхода из строя. По своим энергосберегающим показателям она самая экономная среди аналогов. Может использоваться для освещения улиц, промышленных или жилых объектов и помещений.

Конструкция данной лампочки состоит из следующих элементов: рассеивателя, светодиодов, монтажной платы, радиатора, блока питания, корпуса и цоколя. Последний элемент может иметь два типоразмера патрона: Е14 (маленький) и Е27 (большой).

При выборе необходимо руководствоваться значениями основных характеристик:

  • Световой поток, измеряется в лм (люмены). Количество света, которое распространяется во всех направлениях от источника света.
  • Мощность, единица измерения Вт. Количество потребляемой энергии за единицу времени.
  • Цветовая температура свечения, единица измерения К. Определяет цвет светового потока, исходящего от источника излучения. У ламп накаливания в основном 3000К, это «теплый», желтоватый оттенок. Светодиодные источники света бывают разные, от 3000К до 6500К («холодный» цвет, с небольшой примесью синего).
  • Светоотдача, измеряется в лм/Вт. Характеристика, определяющая эффективность и экономность источника света. У изделий разных производителей, она, конечно же, разная.
  • Температура нагрева, единица измерения °C. Указывает на рабочую температуру нагрева стеклянной поверхности лампы.
  • Срок службы, измеряется в часах. Определяет максимальный срок эксплуатации в оптимальных и заявленных производителем условиях.
  • Индекс цветопередачи, CRI. Измеряется в пределах от 0 до 100 баллов. Для оптимального восприятия человеком цветопередачи от источника свет, чем больше баллов, тем выше. Нормальным считается значение 80 CRI.

Данная разновидность энергосберегающей лампочки может производиться двух типов: стандартное (грушевидная форма) и в виде «кукурузы». Этот фактор необходимо учитывать при замене источника света в светильнике. Последний вид не рекомендуется использовать, поскольку в такой конструкции светодиоды располагаются с наружной стороны.

Определение общего типа подсветки

Решив задействовать вариант расчета коэффициента использования светового потока для одного источника света, вам нужно будет использовать следующую формулу:

Формула расчета общего освещения

Чтобы определить требуемое число осветительных приборов, можно использовать такую формулу:

Формула расчета числа ламп

Здесь:

  • ЕH – минимальный уровень для освещенности;
  • S — площадь, которую необходимо осветить;
  • k — коэффициент запаса. Он для лампочек накаливания будет составлять 1,15, а для ДРИ, ДНаТ, ДРЛ и для люминесцентных ламп — 1,3;
  • Z – показатель для минимальной освещенности. Для лампочек накаливания, ДРЛ, ДНаТ и ДРИ он составит 1,15, а для люминесцентных источников света — 1,1;
  • N — число ламп;
  • n – число лампочек в осветительном изделии;
  • h – коэффициент, применяемый для использования светового потока.

Проведя расчет с использованием вышеприведенных формул, вы получите значение общего светового обеспечения и количество требуемых светильников для его реализации.

Точечный метод расчета освещения

Т очечный метод расчета искусственного освещения позволяет установить уровень освещенности каждой точки в помещении, независимо от расположения в горизонтальной, вертикальной и наклонной плоскостях.

Этот метод невероятно трудоемкий, однако результат стоит затраченных усилий. Он позволяет получить наиболее точные данные и зависит лишь от того, насколько добросовестно инженер выполнит все расчеты.

Расчет освещения точечным методом также используется для расчета неравномерного освещения: общего, местного, наружного, локализованного. Освещенность помещения, согласно расчету, должна в любой точке достигать значения нормы даже при условии, когда срок службы источника света подходит к концу.

За основу расчета берется основной закон светотехники. Формула произведения расчета зависит от светового прибора и характеристик объекта. В расчете используются специальные вспомогательные номограммы, графики и таблицы.

где I — сила света в направлении от источника к точке, кд;
cos а — косинус угла падения луча на плоскость;
R — расстояние между источником и точкой, м.

Прежде чем начать расчет необходимо вычертить схему размещения осветительных приборов в масштабе. Это позволит определить геометрические соотношения и углы падения света.

К расчету освещения точечным методом. С — светильник, О — проекция светильника на расчетную плоскость, А — контрольная точка.

Представленные методы расчета освещенности помещений наиболее часто используются специалистами. Выбор конкретного метода должен быть обусловлен функциональным предназначением помещения, а также количеством средств, которые будут вложены в освещение.

Расчет освещенности помещения крайне важен для будущей эксплуатации здания.

Главное управление строительства разработало специальные нормативные правила, занесенные в специальную документацию под названием СНиП. При произведении расчетов необходимо опираться на этот документ.

Помните, что от правильного расчета освещенности и подбора осветительного оборудования будет зависеть здоровье, а иногда и жизни людей. Нужно крайне ответственно отнестись к этому процессу, несмотря на то, что качественное его исполнение может отнять достаточно значительный промежуток времени и большое количество сил. Помните, что здоровье человека превыше всего и оно явно стоит затраченных на это усилий.

Расчет освещенности

Любое промышленное предприятие представляет собой совокупность помещений различного назначения: производственные цеха, вспомогательные помещения, кабинеты ИТР, склады и пр. Освещенность каждого объекта регламентируется нормами СНиП и СанПиН. Они являются обязательными к исполнению и учитываются еще на стадии проектирования.

Поэтому, если вы выбираете светильники на новый объект – просто руководствуйтесь характеристиками, указанными в проекте.

При замене освещения на уже введенном в эксплуатацию объекте есть несколько вариантов.

1хLED = 3хДРЛ

1хLED=2хМГЛ

1хLED=2,5хДНаТ,

где LED – светодиодный светильник, ДРЛ – ртутная лампа, МГЛ – металлогалогенная лампа, ДНаТ – дуговая натриевая трубчатая лампа.

2. Метод коэффициента использования.

Световой поток для каждого светильника определяется по формуле

,

где E – минимальная освещенность, лк

k – коэффициент запаса, учитывает уменьшение светоотдачи в процессе эксплуатации. Для светодиодных ламп =1,1.

S – площадь освещаемого пространства

z – коэффициент минимальной освещенности. Характеризует неравномерность освещения, определяется отношением расстояния между светильниками к расчетной высоте (L/h). Для светодиодных ламп рекомендуется принимать z=1,1.

N – планируемое количество светильников

ŋ – коэффициент использования. Зависит от индекса помещения i, определяемого по формуле

где А, В – длина и ширина помещения

h – расстояние от рабочей плоскости до светильника.

Зная индекс помещения и коэффициент отражения пола/стен/потолка, по таблице определяем ŋ

потолок

0,8

0,7

0,7

0,5

0,5

0,5

стены

0,5

0,5

0,3

0,5

0,3

0,3

пол

0,3

0,3

0,3

0,3

0,3

0,1

Индекс помещения

0,60

0,33

0,32

0,25

0,3

0,24

0,24

0,80

0,41

0,39

0,32

0,36

0,3

0,29

1,00

0,47

0,45

0,38

0,42

0,35

0,34

1,25

0,53

0,51

0,44

0,47

0,41

0,39

1,50

0,58

0,55

0,48

0,51

0,45

0,43

2,00

0,65

0,62

0,56

0,57

0,52

0,49

2,50

0,7

0,67

0,61

0,61

0,56

0,53

3,00

0,64

0,71

0,65

0,64

0,6

0,56

4,00

0,79

0,75

0,7

0,68

0,64

0,6

5,00

0,83

0,78

0,74

0,71

0,68

0,62

Табл. 1 – Коэффициент использования для светодиодных светильников с углом раскрытия светового потока 120⁰

Материалы с высокой отражаемостью 

0,8

Белая поверхность

0,7

Светлая поверхность

0,5

Серая поверхность

0,3

Темная поверхность

0,1

Табл.2 – Коэффициент отражения света в зависимости от цвета поверхности

После получения значения Ф подбираем светодиодный светильник с аналогичным световым потоком. Допускается отклонение -10%…+20%.

Пример.

Подберем светильники для ремонтного цеха, имеющего размеры 36х18м и высоту 10м. Стены – светло-серые, пол бетонный, потолок окрашен белой краской. Намечено 15 световых точек.

 Е = 200 лк (СНиП 23-05-2010), k=1,1

S=36х18=648м2

z=1,1, N=15

Светильник DS-StreetA160P имеет световой поток 20800лм, что соответствует необходимому значению.

Альтернативы ручному расчету уличной освещенности

Чтобы реальность после установки фонарей или прожекторов соответствовала ожиданием, необходимо учитывать массу факторов. На итоговый результат могут повлиять свойства ламп, угол наклона опор, нацеливание и ослепленность, варианты размещения светоприборов и многое другое. Учесть большое количество факторов и минимизировать ошибку помогают программные продукты.

Самые популярные среди проектировщиков:

·Dialux – способен учитывать даже погодные условия, строить 2-мерные и 3-мерные модели, создавать видео-визуализацию.

·Light-in-Night Road – мощный инструмент для онлайн расчета уличного освещения различных объектов от локальных автодорог до многоуровневых дорожных развязок, магистралей и эстакад.

·NanoCAD – позволяет делать точные вычисления и создавать проектную документацию, имеет достаточно простой интерфейс.

Перечисленные сервисы имеют как бесплатные, так и коммерческие версии, дополнены базами светильников, открывают широкие возможности визуализации. Программы – это еще отличная возможность для проверки и анализа правильности проделанных вычислений. Кроме того, их использование необходимо, когда речь идет об индивидуальном проекте, например, парка отдыха с уникальной планировкой и персональным ландшафтным дизайном.

Еще одна альтернатива использования формул – калькулятор уличного освещения. Достаточно ввести необходимые параметры, и через пару секунд вы получите искомый результат.

Метод удельной мощности

Этот вариант расчета не самый точный, поэтому его используют при ориентировочных расчетах. Его преимуществом является простота. Расчет освещения методом удельной мощности ведется по этой формуле:

где р — показатель удельной мощности, Вт/м2;

S — площадь освещаемого помещения в м2;

n — количество ламп в осветительной установке.

Удельная мощность – это частное от деления общей мощности лампы на площадь помещения. Она также зависит от типа светильника, высоты его подвеса, свойств отражающих поверхностей и выбранной нормы освещения.

Размещение светильников в помещении

Н – высота помещения; hс – высота свеса (расстояние от перекрытия до светильника); hп – высота светильника над полом; hр – высота рабочей поверхности (расстояние от пола до рабочей поверхности); h – расчетная высота (расстояние от светильника до рабочей поверхности); Lа – расстояние между светильниками в ряду; Lв – расстояние между рядами светильников; l – расстояние от крайних светильников или их рядов до стены.

Если выбранный тип светильника не отвечает стандартным требованиями мощности, его следует заменить на ближайшую по значению стандартную большую лампу. Для жилых и производственных помещений существуют разные нормы – от 3,5 до 12 Вт/м2 и от 3 до 10 Вт/м2 соответственно.

В интернете или литературе можно найти таблицы расчетов методом удельной мощности.

Как выбрать светодиодные светильники для помещения?

Светодиодное освещение помещений должно ориентироваться на следующие показатели:

  1. Рассеивание света.
  2. Цветовая температура.
  3. Величина светового потока.

К примеру, при выборе матового света достигается мягкое рассеянное освещение (подходит для кабинета и небольших площадей), а прозрачное распределение света более актуально для больших помещений. Теплый свет больше подойдет лаундж-зоне, нейтральный белый — для подсветки рабочих поверхностей, а холодный — освещения складов.

Виды точечных светильников

Существует множество вариантов точечного освещения. Точечные светильники могут быть накладными (прикрепляться к стенам или потолку) и встраиваемыми. В зависимости от типа регулировки бывают поворотные и неповоротные приборы, даунлайты, стопы, карданные светодиоды и выдвижные приборы.

Как рассчитать освещение светодиодной лентой?

Светодиодная лента предназначена для декорирования помещения. Методика расчета основывается на интенсивности светового потока на 1 пог. м. ленты. Конечно же, можно выбрать мощные светодиоды. Но они более подходят для уличного освещения — фасадов, неоновых вывесок и щитов. Для домашнего оформления помещений вполне достаточно 6,5-24 Вт лампы.

Как самостоятельно рассчитать освещенность в помещении?

В этом случае мы рекомендуем умножать эти нормы в 1,5-2 раза и устанавливать несколько выключателей, разделяя их по зонам и по количеству светильников. Таким образом, в нужный момент, можно включить часть светильников и получить мягкое, не яркое освещение, а при необходимости, включив все светильники, можно будет получить уровень освещенности, сравнимый с операционной в больнице. При этом, даже такой высокий уровень освещенности будет потреблять в разы меньше электроэнергии, чем при использовании обычных ламп накаливания или энергосберегающих ламп.

В ближайшем будущем для Вашего удобства мы сделаем автоматический конфигуратор уровня освещения, с которым не придется вооружаться калькулятором для расчета. 

Что такое световой поток

На самом деле для расчета освещенности проектантами ранее использовалась другая величина – кандела (свеча), также имеющая прямое соответствие потребляемым ваттам лампой накаливания. В технической литературе начала второй половины прошлого века можно встретить выражения «тысячесвечовая лампа» и т.п. Яркость в канделах означает мощность света в ваттах, излучаемых в определенном направлении. В качестве визуальной ассоциации – такую яркость обеспечивает обычная горящая парафиновая или стеариновая свечка. Отсюда и название. Такой подход обеспечивает визуальное представление яркости, как количество горящих свечей.


Яркость свечения в одну канделу

Для понятия светового потока существует определение – мощность энергии излучения, которая оценивается по световому ощущению. Или количество фотонов, испускаемых в единицу времени. Математически это выглядит так: если точечный источник силой в 1 канделу излучает поток в телесный угол, равный одному стерадиану, то он создает световой поток в 1 люмен (лм).


Графическое изображение стерадиана

Требует пояснение понятие стерадиана. Чтобы представить телесный угол в 1 ср, надо взять конус с вершиной в центре сферы радиуса R, который вырезает на поверхности сферы площадь, равную R2 . Угол раскрыва такого конуса составляет около 65 градусов.

Если точечный источник света в 1 канделу, излучающий одинаково во все стороны, поместить в сферу, радиусом 1 м, то на ее внутренней поверхности создастся освещенность, равная 1 люксу (лк). Эта величина используется для задания норм освещенности. Так, для различных помещений, согласно СНиП, должны выполняться условия:

  • классные комнаты общеобразовательных школ – 500 лк;
  • аудитории ВУЗов – 400 лк;
  • спортзалы – 200 лк.

Нормы освещенности установлены и для других помещений.

Если световой поток в 1 лм падает на 1 кв.м. поверхности, то он создает освещенность в 1 лк. Отсюда связь между люменом и люксом: 1 лк = 1 лм/кв.м. Например, чтобы обеспечить достаточную освещенность в аудитории, площадью 100 кв.м., нужен световой поток в 40000 люмен. Также надо учесть, что освещенность убывает пропорционально квадрату расстояния от источника света, поэтому высота подвеса светильника имеет значение.

Драйверы для светодиодных источников света ON Semiconductor

В статье сделан обзор драйверов светодиодов компании ON Semiconductror. В первую очередь рассматриваются новые типы продукции, которые появились в номенклатуре светодиодных драйверов ON Semi в этом году.

2 марта

а, темп развития светодиодных технологий, который часто любят характеризовать таким параметром как рост световой отдачи, впечатляет. Средний прирост этого показателя для серийно выпускаемых светодиодов за последние пять лет составляет около 13…15 лм/Вт в год. Однако, на сегодняшний день световая отдача светодиодов, применяемых в серийных уличных светильниках еще не превысила этот показатель для натриевых ламп высокого давления — самого распространенного источника света для уличного освещения. Тогда в чем энергоэффективность светодиодных светильников?

Энергоэффективность светильника

Для оценки энергоэффективных свойств осветительного прибора необходимо провести анализ по четырем параметрам:

1) световая отдача источника света;

2) КПД светильника;

3) электрический КПД светильника (потери в блоке питания, ПРА);

4) коэффициент использования светового потока.

Световая отдача светодиодов не превышает этот показатель для традиционных источников света в уличных светильниках, поэтому для экономии электроэнергии необходимо, чтобы значения остальных параметров были больше чем у существующих осветительных приборов.

В двух словах отметим, что КПД блока питания светодиодов и ПРА для газоразрядных ламп примерно одинаковы и равны для большинства образцов 80—85%.

КПД самого светильника (отношение светового потока светильника к световому потоку источников света) зависит от материалов отражателей, рассеивателей и линз. В существующих светильниках с газоразрядными лампами и в светодиодных применяются однотипные материалы, поэтому получить выигрыш более 10—20% в КПД практически не реально. Заметим, что КПД уличного светильника с натриевой лампой высокого давления для большинства образцов довольно высокий. Например, светильники ЖКУ28-150-001, ЖКУ21-150-003, ЖКУ15-150-101Б и др. объединения Galad имеют КПД более 74%. При улучшении этого показателя на 20% получим значение 89%, что сопоставимо с коэффициентом пропускания защитных стекол и рассеивателей из полиметилметакрилата, поликарбоната, стекла . В этом случае мы получаем светильник, светораспределение которого формируется расположением самих светодиодов без дополнительных отражателей, линз, ограждающих конструкций защитного угла, что для уличного светильника крайне проблематично.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий