Контроль фаз — назначение, принцип работы и схема подключения

УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ

Основными компонентами фазового реле являются:

  • блок измерений;
  • устройство обработки информации;
  • исполнительная (коммутационная) часть.

БЛОК ИЗМЕРЕНИЙ

Эта часть схемы реле осуществляет непрерывный контроль параметров электропитания – фазных токов и напряжений. Для фиксации искажений симметрии трёхфазной питающей системы напряжений устройство содержит фильтр гармонических составляющих обратной последовательности.

Гармонические составляющие или высшие гармоники представляют собой высокочастотные сигналы, сопутствующие основной частоте промышленного тока и кратные ей.

Теоретически кривые каждого из фазных напряжений, вырабатываемых генераторами электростанций должны иметь строго синусоидальную форму. На практике любой источник напряжения даёт некоторые искажения синусоиды.

Свой вклад в дело ухудшения синусоидальности вносят также разнообразные потребители, содержащие нелинейную нагрузку. В результате, питающее напряжение электрической сети никогда не является синусоидальным на 100%.

В соответствии с теоремой Фурье любая сложная периодическая функция может быть представлена суммой простых гармонических функций.

Примечание.

Гармонической называют функцию, изменяющуюся по закону синуса или косинуса.

Таким образом, любое отклонение от синусоидальности влечёт за собой появление высших гармоник – слагаемых формулы разложения Фурье. Каждая из функций – слагаемых имеет частоту, в n раз превышающую частоту основной функции, где n – порядковый номер слагаемого.

То есть применительно к системе питания промышленной частоты 50 Гц, 1-я гармоника обладает частотой 50 Гц, 2-я – 100 Гц, 3-я – 150 Гц и так далее. Амплитуда гармоник уменьшается с увеличением их порядкового номера.

Вся совокупность гармоник образует три последовательности фазных чередований:

  • составляющие 1, 4, 7, 10 … образуют прямую последовательность;
  • 2, 5, 8, 11… — соответствуют обратному фазному чередованию;
  • 3, 6, 9, 12… — составляют нулевую последовательность.

Нарушения симметрии системы характеризуются увеличением гармоник обратной последовательности, что и является критерием отклонения от нормы, применяемым в алгоритме контроля при работе реле.

БЛОК ЛОГИКИ

Данные, полученные из блока измерения, подвергаются здесь сравнению с условиями, определёнными выставленными уставками. Блок логики формирует команды, которые передаются исполнительному органу.

Следует заметить, что в схемотехнике реле контроля бывает невозможно выделить компоненты, относящиеся к блокам логики и измерений. В некоторых моделях используются многофункциональные микропроцессорные чипы, объединяющие эти блоки.

ИСПОЛНИТЕЛЬНЫЙ ОРГАН

Отключение защищаемой электроустановки или части сети производится «сухими» контактами электромагнитного реле или пускателя.

Термин «сухой контакт» является устойчивым жаргонным выражением проектировщиков автоматизированных систем. Выражение заимствовано из жаргона англоязычных коллег путём прямого перевода слов dry contact. Данное выражение никак не связано с отсутствием влаги.

Означает оно то, что контакт не имеет гальванической связи с цепями управления, не заземлён и не подключен к источнику питания.

В различных моделях реле контроля фаз применяются исполнительные органы двух типов, коммутирующие нагрузку непосредственно или воздействуя на промежуточный элемент – магнитный пускатель.

В первом случае устройство имеет три входа для подключения трёхфазного питания и три выхода для непосредственного присоединения к нагрузке. Коммутация нагрузки осуществляется внутри устройства.

При подключении реле контроля фаз второго типа подразумевается использование пускателя. В этих приборах имеются выходы контактов исполнительного реле, предназначенных для работы в цепях отключения. Сухие контакты реле контроля фаз коммутируют катушку пускателя.

Такие комбинации используются для защиты оборудования большой мощности, непосредственная коммутация которого невозможна контактами исполнительного органа.

Реле контроля пропадания фаз РПФ

Реле контроля и пропадания фаз РПФ с контролем асимметрии фаз. Реле контроля фаз, в данном случае — реле пропадания фазы РПФ — это одно из наиболее простых и надежных устройств для контроля за питанием для трехфазных нагрузок, с целью их защиты от поломки.

РПФ контролирует такие аварийные ситуации как — пропадание одной или нескольких фаз, слипание фаз, перекос напряжений по фазам (асимметрия фаз). Все параметры защиты и временные интервалы срабатывания защиты запрограммированы в энергонезависимой памяти устройства.

Управление защитным отключением 3-фазной нагрузки осуществляется через собственное реле 10А, путем управления питанием внешнего контактора. На DIN-рейку, ширина — 2 модуля.

Назначение и область применения

Реле контроля фаз РПФ — это электронное микропроцессорное устройство, которое используется для защиты трехфазного бытового или производственного оборудования в результате аварийных внештатных ситуаций в сети 380В, которые могут возникнуть как в результате нового монтажа, так и в режиме текущей эксплуатации. Это позволяет спокойно эксплуатировать трехфазное оборудования, зная, что оно не выйдет из строя в самый неподходящий момент.

Как работает реле контроля фаз

Реле контроля и пропадания фаз РПФ работает в режиме текущего контроля 3-фазной сети и в нормальном режиме — подает питание на обмотку внешнего устройства коммутации, через контакты собственного силового реле, находящегося внутри прибора. Как только произошло нарушение параметров питания нашей трехфазной нагрузки, происходит размыкание питания на внешний контактор, который аварийно отключает наше оборудование.

Какие параметры контролирует РПФ

Реле пропадания фазы РПФ — контролирует основные характеристики питающей сети 380В, которые могут привести к следующим последствиям:

  • пропадание одной или нескольких фаз — может привести к выходу из строя большую часть трехфазного оборудования, в особенности электродвигатели, входящие в состав большого количества оборудования 380В
  • слипание фаз — может вывести из строя абсолютное большинство электрических устройств
  • перекос напряжений (асимметрия) по фазам — может привести к неправильному эксплуатационному режиму работы и вследствие чего перегрев обмоток электродвигателей и трансформаторов вплоть до выхода из строя

Краткие технические характеристики РПФ

  • Контроль наличия всех трех фаз – есть
  • Контроль «слипания» фаз – есть
  • Контроль асимметрии фаз – есть
  • Допустимый перекос напряжений по фазам – 45 вольт
  • Время защитного отключения – 2-6 сек.
  • Время повторного включения (автовозврат) – 10 сек.
  • Номинал собственного исполнительного реле – 10 А
  • Размер на din-рейке — 2 модуля

Подробнее — во вкладке «характеристики» и в — инструкции по эксплуатации реле пропадания фаз РПФ.

Достоинства и недостатки

Достоинства:

  • Высокое качество и надежность
  • Простое в установке и подключении
  • Предустановленные заводские настройки
  • Низкая стоимость в сравнении с более сложными

Гарантия: 24 мес.

Тип прибора
Трехфазная защита 380Вна DIN-рейку в РЩ
Технические характеристики
Максимальный ток активной нагрузки, А10 (управление контактором)
Максимальная мощность нагрузки, Вт2200 (обмотка контактора)
Рабочее напряжение прибора, В380 В, линейное ~40-430, 50 Гц
Функция контроля пропадания одной или нескольких фазесть
Функция контроля слипания фазесть
Функция контроля асимметрии (перекоса) фазесть
Асимметрия фаз (фиксированная) Uасимм, В45
Время задержки отключения при пропадании фазы, сек2
Время задержки отключения при «слипании» фаз, сек2
Время задержки отключения при асимметрии фаз, сек6
Время задержки включения при нормализации характеристик, сек10
Энергонезависимая память настроекда
Режимы работы
Количество режимов скорости работы1 (один)
«Стандартный» режим быстроты срабатыванияесть (по умолчанию)
Задержка отключения при обрыве или «слипании» фаз, сек2
Защитное отключение при асимметрии фаз (фиксированное), сек6
Вес, размеры, энергопотребление
Габаритные размеры (Д х Ш х В), мм90х35х63
Вес, кг0,090
Ширина на DIN-рейке, модулей по 17,5 мм2
Потребляемая мощность (не более), Вт0,5
Защита и гарантия
Степень защитного исполненияIP20
Гарантия24 мес.

Как выполнить проверку?

Проверка может производиться несколькими способами. Целесообразность выбора того или другого варианта осуществляется в зависимости от параметров электрической сети и задач, которые необходимо решить. Так чередование можно узнать при помощи фазоуказателя, мегаомметра, мультиметра или по расцветке изоляции кабеля. Рассмотрите каждый из вариантов более подробно.

С помощью фазоуказателя

По принципу действия, фазоуказатель можно сравнить с обычным асинхронным двигателем. Рассмотрим в качестве примера наиболее распространенную модель фазоуказателя — ФУ-2 .

Рисунок 3: Принципиальная схема работы ФУ-2

Как видите на рисунке 3, у указателя последовательности фаз присутствуют три обмотки, которые подсоединяются к одноименным фазам в сети или устройстве. Между обмотками находится вращающийся ротор Р, который приводит в движение диск фазоуказателя Д.

На практике, после подсоединения к зажимам фазоуказателя соответствующих проводов, работник нажимает кнопку К, которая замыкает цепь обмоток. В зависимости от порядка чередования фаз, диск Д начнет вращаться по часовой или против часовой стрелки.

На самом приборе имеется стрелка, показывающая прямое чередование. Если при нажатии кнопки диск вращается в том же направлении, что и показано стрелкой, то эта трехфазная нагрузка имеет прямое чередование. Если диск начнет крутиться в противоположную от стрелки сторону, то чередование фаз обратное. Следует отметить, что этот прибор не способен определить, какая фаза на каком проводе находится, он может определить лишь порядок их чередования.

С помощью мегаомметра

Как один из способов прозвонки жил широко используется прибор для измерения сопротивления – мегаомметр.

Рис. 4: Прозвонка кабеля мегаомметром

Посмотрите на рисунок 4, для реализации такой схемы, вам понадобится отключить кабель от сети и от потребителя. При этом, с одного конца кабеля фазы поочередно соединяются с землей З, как и металлическая оболочка у бронированных кабелей. С другой стороны присоединяется мегаомметр М, один из зажимов которого заземляется, а второй поочередно подводится к каждой из фаз. На той, где мегаомметр покажет нулевое сопротивление, и будет одним проводом.

На концах одноименного провода устанавливается соответствующая маркировка. Недостатком такого способа прозвонки является большой объем трудозатрат. Так как каждая жила заземляется поочередно, после чего выполняется проверка. При этом на обоих концах кабеля должны устанавливаться ответственные сотрудники. Между ними должна обеспечиваться связь, для согласования действий и предупреждения подачи напряжения на работников.

По расцветке изоляции жил

Если в каком-либо устройстве имеется подключение разноцветными жилами, то фазировку оборудования можно выполнять по цветам. Для определения нахождения одноименных напряжений тех или иных фаз необходимо добраться до каждой жилы кабеля. Если на каждом проводе присутствует изоляция разных цветов, то сравнив их с местом присоединения к трансформатору или распедустройству, можно определить, где какая фаза находится.

Недостатком такого метода следует отметить ложную цветовую маркировку, так как производитель кабеля не всегда обеспечивает один и тот же цвет для каждой жилы на всей протяженности провода. Поэтому предварительно его все равно рекомендуется прозванивать и маркировать.

При помощи мультиметра

Для этого метода используется обычный мультиметр. Он наиболее актуален в тех ситуациях, когда необходимо включить в параллельную работу два смежных устройства и их шины расположены поблизости.

Рис. 5: фазировка мультиметром

Необходимо выполнить сравнение фазных напряжений в соседних линиях, на рисунке 5 приведен пример для фаз А и А1. Коммутационная аппаратура при этом должна быть разомкнута. Перед тем как пользоваться мультиметром, на нем выставляется класс напряжения, для линии, на которой будет производиться замер. Щупы подводятся к выводам фаз, при этом их изоляция должна обеспечивать защиту от напряжения, а на руки надеваются диэлектрические перчатки.

Если при подключении щупов к выводам A — A1 стрелка останется на нулевой отметке, то это значит, что фазы одинаковые. Если стрелка отклонится на величину линейного напряжения, вы меряете разноименные фазы.

Особенности распространенных видов реле напряжения


Виды реле напряжения

Благодаря реле напряжения во время перепадов энергии прибор не сгорит, не расплавится плата, не выйдет из строя электродвигатель. Стоимость приборов немалая, но они окупаются. Лучше предотвратить аварийные ситуации, чем покупать новую технику.

На рынке существует несколько видов несколько реле контроля разных производителей. Они обладают одинаковым принципом работы, хотя конструкция и набор дополнительных функций могут отличаться.

В современных устройствах установлена цифровая индикация. Она позволяет следить за уровнем напряжения в трех фазах. Также присутствуют дополнительные настройки. С их помощью регулируют работу прибора и обеспечивают простоту и удобство использования.

Схема подключения и установка реле напряжения


Элементы реле

Прибор будет выполнять свои функции независимо от положения. Но каждая модель обладает своей схемой подключения. Ее можно посмотреть на корпусе.

Для всех устройств существуют одинаковые правила, которые предназначены для контроля процесса соединения реле с электрической цепью.

Вводные контакты к сети присоединяют через контактор или пускатель. Проводники всех фаз совмещают с клеммами, которые находятся с верхней части прибора. Элементы помечают так:

  1. Фазы буквами А, В и С.
  2. N – клемма нулевого провода.
  3. 1,2,3 – нижние клеммы.

Сначала из клеммы 1 проводник подсоединяют к выходу катушки, которая находится в контакторе. Клемму 3 подключают к любой фазе. Второй выход присоединяют к нулевому проводнику трехфазной сети.

Силовые элементы соединяют так:

  1. Каждую фазу, которая подает ток, подключают к входной клемме контактора.
  2. Проводники соединяют с выходными клеммами.
  3. Чтобы подключить нулевые проводники, в распределительном щитке устанавливают общую нулевую шину.

Для обеспечения надежного контакта используют специальные наконечники.

Типичные схемы подключения

В большинстве случаев, на корпусе каждого устройства производителем устанавливаются все необходимые данные о способе подключения конкретного реле. Для примера заберем несколько схем известных производителей:

Схема подключения РКФ РНПП-311

На схеме показано подключение клеммного ряда к соответствующим фазам линии L1, L2, L3 и нейтрале N. На выходе возможно получить две цепи управления «Выход 1» и «Выход 2», отличающиеся по уровням напряжений.

Схема подключения реле OMRON

Питание осуществляется по вводным каналам L1, L2, L3 и через нейтраль N. На выходе получается два варианта трехфазная трехпроводная система и трехфазная четырехпроводная, для работы с соответствующим коммутатором.

Схема подключения РКФ Carlo Gavazzi

В отличии от предыдущих вариантов клеммы вводов L1, L2, L3 запитываются через предохранители. Блок регулировки параметров позволяет отстраивать соответствующий режим работы и пределы отключения по ним. Два выхода с возможностью ручной коммутации посылают управленческие сигналы на переключение тех или иных устройств.

Последние две схемы демонстрируют работу вторичных цепей отключения нагрузки с соответствующей временной задержкой по этим клеммам. Как видите, все схемы подключения имеют идентичные компоненты, предназначенные для отслеживания всех параметров сети, способных сигнализировать сбой в электроснабжении трехфазных потребителей.

Плюсы и минусы отечественных реле

Разработчикам и наладчикам оборудования периодически приходится выбирать между отечественными и зарубежными производителями автоматики. С одной стороны, все хочется сделать дешевле, а с другой — надежнее. Для правильного выбора необходимо учесть плюсы и минусы каждого из вариантов.

Достоинства российских реле контроля:

  1. Низкая цена. Импортные РКФ стоят минимум в 2 раза больше.
  2. Возможность действия устройства при температурах ниже –25°C. У зарубежных такая выносливость встречается реже.
  3. Российские реле серии ЕЛ не требуют дополнительного питания 24 В. Большинству же зарубежных требуется дополнительный источник напряжения.

Устройства производства Электротехнической Компании Меандр

Недостатки российских РКФ:

  1. Высокое тепловыделение. Это указывает на ненадежность силовых контактов или большое потребление тока собственных нужд.
  2. Некорректность работы аналоговых цепей РКФ. Чувствительность к внешним помехам.
  3. Устаревший внешний вид. Хотя в последнее десятилетие в плане дизайна отечественной автоматики наблюдается «оттепель».

Назначение и функции

Данная технология применяется в сети трехфазных нагрузок. Наиболее востребована для защиты электродвигателя синхронного или асинхронного, трехфазных станков высокой точности, технологичной электроники, насосов. Заметьте, что неправильное чередование фаз приведет к низкой эффективности его работы, перегреву и снижению уровня изоляции, что может привести к пробою.

Применяется для следующих целей:

Для коммутации преобразовательного оборудования, которому важно соблюдение последовательности фаз: источников питания, выпрямителей, инверторов и генераторов;
Для систем АВР (введения в работу резервных источников питания) или подключения системы аварийного освещения;
Для специального оборудования – станков, крановых установок, мощность которых составляет не более 100 кВт;
Для электроприводов трехфазных двигателей, имеющих мощность не более 75 кВт.

Для коммутации однофазной нагрузки данное устройство не используется.

В целом реле контроля фаз применяется для различного промышленного и бытового оборудования и является обязательным предохранителем для тех схем управления, в которых требуется постоянный мониторинг величины напряжения и других параметров внешних линий.

В трехфазных сетях осуществляет контроль:

  • уровня напряжения, реализуемая, в преимущественном большинстве, для оборудования такого класса в случаях, когда его величина выходит за установленные пределы;
  • чередования фаз – выполнит коммутацию в случае аварийного слипания фаз или при их неверном расположении относительно питающих вводов оборудования;
  • пропадания фазы – производит отключение потребителя в случае обрыва фазы и последующего отсутствия напряжения;
  • перекоса фаз – производит коммутацию в случае изменения фазного или линейного напряжения по отношению к номинальному значению.

Преимущества реле контроля фаз

В сравнении с другими устройствами аварийных отключений данные электронные реле отличаются рядом весомых преимуществ:

  • в сравнении с реле контроля напряжения не зависит от влияния ЭДС питающей сети, так как его работа отстраивается от тока;
  • позволяет определять аномальные скачки не только в трехфазной сети питания, но и со стороны нагрузки, что позволяет расширить спектр защищаемых компонентов;
  • в отличии от реле, работающих на изменение тока в электродвигателях, данное оборудование позволяет фиксировать еще и параметр напряжения, обеспечивая контроль по нескольким параметрам;
  • способно определить дисбаланс уровней питающих напряжений из-за неравномерности загрузки отдельных линий, что чревато перегревом двигателя и снижением параметров изоляции;
  • не требует формирования дополнительной трансформации со стороны рабочего напряжения.

В отличии от реле, работающих только по напряжению обеспечивает действующую защиту от регенерированного напряжения, вырабатываемого обратными ЭДС. В случае, когда одно из фазных напряжений пропадает, двигатель продолжает набирать достаточный уровень энергии с остающихся двух. При этом в обесточенной фазе будет генерироваться ЭДС от вращения ротора, который продолжает крутиться от двух фаз в аварийном режиме.

Из-за того, что контакторы электродвигателей не размыкаются от реле при такой работе, возникает риск повреждения электрической машины с ее дальнейшей поломкой. Реле контроля, в свою очередь, способно обнаружить смещение фазового угла, за счет чего обеспечивается полноценная защита.

Такая функция особенно актуальна, когда рабочий режим двигателя, в случае его реверсивного вращения, способен повредить вращаемый элемент или травмировать работника. Как правило, такая ситуация возникает при внесении изменений во время обесточивания электрической машины, смене фазных нагрузок, порядка чередования фаз и прочих.

Проверка фазировки электрического оборудования

Электрооборудование трёхфазного тока (трансформаторы, генераторы, кабельные линии электропередач) подлежит обязательной фазировке, перед тем как оно впервые будет включено в сеть или же по окончании очередного ремонта, в результате которого могло произойти нарушение порядка чередования, следования фаз.

Фазировка заключается в проверке совпадения по фазе напряжений каждой из 3-х фаз включаемой электроустановки с соответствующими напряжениями сети. Подобного рода проверка, безусловно, необходима, ведь в процессе сборки, монтирования и ремонта электрооборудования фазы могли быть переставлены местами.

У электромашин, например, не исключается и ошибочное обозначение силовых выводов статорных обмоток; у кабелей в соединительных муфтах могут быть между собой соединены жилы разноимённых фаз.

Во всех этих случаях единственным выходом считается выполнение фазировки. Как правило, эта технологическая операция состоит из 3-х основных перечисленных ниже этапов.

Проверка и сравнение порядка чередования фаз у электрической установки и сети. Данная операция выполняется перед непосредственным включением на параллельную работу нескольких сетей, работающих независимо, нового генератора и генератора, прошедшего капитальный ремонт, при котором могла измениться схема присоединения обмоток статора к сети.

Лишь при получении положительных результатов, полученных при фазировке, генераторы или, скажем трансформаторы синхронизируются и включаются на параллельную работу.

Проверка одноимённости или расцветки фазных проводников, которые впоследствии надо будет соединить. Эта операция ставит перед собой цель проверить правильность соединения всех элементов установки между собой. Проще говоря, выверяется правильность подвода токоведущих жил к включающему аппарату.

Проверка совпадения по фазе одноимённых напряжений, то есть отсутствия между ними угла сдвига фаз. В электрических сетях во время фазировки линий электропередач и силовых трансформаторов, которые принадлежат одной электрической системе, достаточно выполнить 2 последние операции, поскольку у всех генераторов, работающих синхронно с сетью, порядок следования фаз одинаков.

Приборы для фазировки. Сегодня существует множество методик, которые зависят от прямого назначения электрооборудования, схем соединения обмоток и от используемых приспособлений и приборов. К основным приборам и приспособлениям можно отнести:

Вольтметры переменного тока, используемые при фазировки электроустановок до 1 кВ и подключаемые непосредственно к выводам электрооборудования.

Фазоуказатели, принцип действие которых похож на принцип действия АД (асинхронного двигателя), когда при подключении катушки приборов к 3-х фазной сети токов происходит образование вращающегося магнитного поля, которое заставляет вращаться рабочий диск. При этом по направлению вращения диска можно судить о правильности порядка следования фаз токов, проходящих по катушкам.

Универсальные приборы (портативные вольтамперфазоиндикаторы, универсальные фазоуказатели).

Мегаомметры, представляющие собой переносные приборы, необходимые для измерения сопротивлений изоляции в широких диапазонах, что очень хорошо себя зарекомендовало при производстве фазировки.

Указатели напряжения для фазировки. Данные устройства хорошо подходят для фазировки электроустановок выше 1 кВ. При выполнении операции на отключённый аппарат (разъединитель, выключатель) на каждую сторону подаются фазируемые напряжения.

При этом, щупы прибора подносятся к токоведущим частям фазируемого аппарата, и дальше осуществляется наблюдение за свечением сигнальной лампы на устройстве.

Стоит учесть, что горение лампы говорит о несовпадении фаз, а отсутствие свечения лампочки – о согласованном включении и возможности включения коммутационного аппарата.

Методы фазировки. Эта операция может быть предварительной; выполняемой при монтаже и ремонте электрооборудования, и фазировкой непосредственно перед вводом в работу, осуществляемой перед первым включением оборудования, когда фазы могли быть переставлены местами.

Особенности различных исполнений и их возможности

Известны две разновидности приборов, используемых в составе линейных трехфазных систем: фазные реле тока и коммутаторы напряжения. Они имеют типовое исполнение, определяемое требованиями нормативной документации. Интерес представляет сравнительная оценка двух разновидностей модульных устройств.

Плюсы токовых реле

Классическая схема подключения прибора контроля фаз и напряжения в цепь управления трехфазным мотором

Бесспорными преимуществами токовых защитных реле (ТР) при их сравнении с устройствами контроля напряжения являются:

  • независимость от ЭДС, постоянно возникающей при фазных сбоях в случае перегрузки электродвигателя;
  • возможность определения отклонений в поведении электрической машины;
  • допустимость контроля не только самой линии (перед ответвлением), но и подключенной к ней нагрузки.

В отличие от ТР приборы контроля напряжения не позволяют реализовать большинство из перечисленных функций. Они предназначаются в основном для установки в линейные цепи.

Обнаружение фазного сбоя

Сбой из-за обрыва фазы – рядовое явление, связанное со сгоревшим предохранителем или механическим повреждением в сети. В схожих условиях 3-хфазный двигатель, например, при пропадании одной из фаз продолжает работать за счет мощности, отбираемой от оставшихся двух. Любая попытка запустить его вновь при отсутствии одной из фаз будет безуспешной.

Длительность ее обнаружения (реакция на перегрузку) бывает настолько продолжительной, что за это время тепловая защита просто не успевает отключить агрегат. В ее отсутствии реле обрыва фазной жилы срабатывает из-за перегрева обмоток электродвигателя. Но это случается далеко не всегда, что объясняется особенностями работы недогруженного по одной из фаз устройства. В этом случае в нем начинает действовать так называемая «обратная ЭДС».

Обнаружение реверса

Использование защитных реле – это обеспечение безопасности рабочего персонала: 1 – оборванная фаза; 2 – шаговое напряжение

Возможность обнаружения реверса фазы востребована в следующих ситуациях:

  • на двигателе проводится техобслуживание;
  • в систему распределения энергоносителя внесены существенные изменения;
  • после восстановления показателя мощности меняется фазовая последовательность.

Выявление дисбаланса

Выявление дисбаланса в электроцепи

Несбалансированность в электросетях обычно проявляется как значительное различие амплитуд фазных напряжений, поступающих с районной подстанции. Такой дисбаланс наблюдается в ситуациях, когда на стороне потребителя нарушено равномерное распределение нагрузок по каждой из фаз. Его наличие в системе приводит к разбросу токов в отдельных линиях, что заметно сокращает срок службы подключенного оборудования (электродвигателей, например).

Объясняется это тем, что так называемое «слипание» фаз в линиях индуктивных нагрузок вызывает дополнительный нагрев проводов и способствует разрушению изоляции. Все это является обоснованием необходимости установки в действующие электросети указанной модели реле защиты фазы.

Это интересно: Поверка электросчетчиков — сроки, методика, стоимость

Поделитесь в социальных сетях:FacebookTwitter
Напишите комментарий