Расчет контура заземления

Подробно об составляющих контура

Выше упоминалось, что заземление состоит из горизонтальных и вертикальных компонентов. По аналогии производят готовые наборы для оперативного устройства контуров заземления. Следуя приложенной инструкции, сооружать заземление из заводских элементов легко и приятно, но дорого.

Вертикальные проводники заземления

В качестве заземляющих вертикальных стержней для самодельного заземления могут использоваться любые длинномерные изделия из черного металлопроката без оцинковки. Данная обработка не нужна для расположенных в земле деталей, она снижает потенциал. Нежелателен арматурный пруток с ребрами, его сложно забивать в грунт. Подойдет квадрат, полоса, швеллер и его двутавровый собрат. Металлопрокат со сложным профилем применим, если предполагается перед монтажом системы пробурить скважины для закладки вертикальных электродов.

Распространенными материалами для изготовления вертикальных проводников являются:

  • труба с толщиной стенки не меньше 3,0мм, рекомендованный диаметр 32мм;
  • уголок с равными или разными полками с предпочтительной толщиной 5мм;
  • круг с диаметром от 10мм.

Оптимальная площадь сечения вертикального электрода 1,6 см². Отталкиваясь от этого размера, следует подбирать материал. Длина заземлителя определяется в соответствии с местной геологической ситуацией. Необходимо углубиться как минимум на полметра ниже уровня сезонного промерзания.

Второе условие, влияющее на длину металлических стержней – водонасыщенность вмещающих пород. Проще говоря, чем ниже грунтовые воды, тем длиннее нужны электроды.

Для того чтобы не мучиться с геологическими характеристиками и расчетами, сведения о глубине закладки заземлителей нужно узнать в местном энергоуправлении у дежурных электриков. Ориентировочные данные помогут в любом случае, т.к. у них есть некоторый расчетный запас эффективности.

Среднестатистический стандарт длины заземлителя варьирует от 2х до 3х метров с полуметровыми вариациями. Благоприятной для сооружения заземления средой являются суглинки, торф, насыщенные водой пески, супеси, трещиноватые обводненные глины. Совершенно самостоятельно устроить заземление в скальных породах нереально, но способы для создания электрозащиты есть. Перед сооружением контура бурятся скважины требующейся глубины. В них и производится установка стержней, а свободное пространство заполняется песком или супесью, перемешанной с солью или предварительно залитой соляным раствором. Приблизительно полпачки на ведро.

При недостаточной электропроводности грунтов на участке в качестве вертикальных заземлителей лучше использовать трубы. В нижней части их нужно произвольно высверлить несколько технологических отверстий. Через трубы с отверстиями можно периодически заливать соляной раствор для уменьшения сопротивления. Соль, безусловно, поможет разрушиться электродам от коррозии, зато заземление достаточно долго будет действовать безупречно. Потом надо будет просто стержни заменить.

Самостоятельные мастера для изготовления электродов чаще всего используют черный стальной металлопрокат. Ведь во главе собственноручных усилий заложена экономия. Отличный, но недешевый материал для вертикальных электродов – сталь с электрохимическим медным покрытием или медь. Заложенные в землю элементы заземления нельзя окрашивать, краска ухудшит электрохимический контакт металла с грунтами.

Заземляющая металлосвязь — горизонтальный проводник

Горизонтальный элемент заземления, объединяющий систему и подводящий ее к щитку, чаще всего выполняют из полосы шириной 40 мм, толщина полосы 4 мм. Используют также круглую сталь, реже уголок или рифленую арматуру. Полоса приваривается к верхнему краю вертикальных заземлителей или крепится болтами. Преимущества у сварки, она надежней. Места сварных и болтовых соединений щедро обрабатываются противокоррозионной битумной мастикой или просто битумом. Соединять обжимным способом подземные элементы заземления нельзя!

Для сооружения горизонтальной составляющей, расположенной под землей, нежелательно менять материал, чтобы при неизбежном увлажнении не формировалась гальваническая пара с ее традиционными коррозионными последствиями. К выведенному из земли горизонтальному компоненту заземления можно присоединить алюминиевый, медный или стальной проводник. Далее проводом для заземления вся система через приваренный болт подключается к шине, а уже от нее подается на каждый из заземляемых приборов по отдельности.

От чего зависит сопротивление заземления

Как уже говорилось выше, у тока есть одна важная особенность — он течет по тому участку цепи, который меньше всего этому сопротивляется. Сама величина сопротивления зависит от множества факторов:

  1. Материала. Ряд материалов имеет особую (атомарную) структуру, которая подразумевает наличие большого числа свободных электронов. Если такие материалы попадают в действие любого магнитного поля или покдлючаются к источнику питания, то легко проводят электрический ток. В своем большинстве это утверждение относится к металлам. Другие материалы не имеют свободных электронов и их сопротивление току крайне высоко. Если напряжение (сила, «толкающая» электроны) ниже допустимого значения, то проводимость будет равняться нулю или крайне малым значениям. При превышении показателя произойдет пробой и образовавшийся нагар будет иметь свойства проводника. Логично, что материалом для заземления могут быть именно только представители первой группы материалов — именно она обеспечивает минимальное сопротивление.
  2. Его температуры. Темпатура определяет, насколько быстро электроны передвигаются внутри материала. Следовательно, чем ниже она у проводника, тем лучше он проводит заряд. Обратная зависимость тоже носит характер прямой пропорции — после ее повышения его сопротивление будет падать. Расчет сопротивления заземления должен производиться с учетом этого параметра.
  3. Наличия примесей. Основная часть проводников делается из меди. Старые провода изготавливаливались из алюминия, но такие решения имеют сразу несколько недостатков. К сожалению, кабеля и провода из этого материала быстрее перегреваются и плавятся, да и сопротивление промышленно добываемого алюминия ниже, чем таковое у меди. Химически чистый же металл является лучшим проводником, превосходя по проводимости даже серебро. Дело в примесях: они имеют гораздо более высокие показатели сопротивления. Этот же момент стоит учитывать при расчете заземления.

Понятное дело, что в идеале сопротивление должно быть минимальным — для этого нужно использовать медный контур большого сечения. Но дело в том, что медь быстро окисляется, да и стоимость такого решения будет крайне высокой. Следовательно, были разработаны нормы для минимального порога заземления. Этот показатель не нужно превышать для того, чтобы в нужный момент под нагрузкой контур выполнил возложенную на него функцию и отвел заряд в землю.

Что важно знать

Заземление дома необходимо для того чтобы снизить напряжение соприкосновения до неопасного показателя. Благодаря ему потенциал направляется в землю и защищает человека от поражения электрическим током. В ПУЭ (Глава 1.7, п. 1.7.62.) указывается, что частный дом должен иметь сопротивление растекания при трехфазном питании 4 и 8 Ом (первое значение при 380 В, второе – 220 В), а при однофазном – 2 и 4 Ом.

Количество заземлителей необходимо выбрать таким образом, чтобы обеспечить нормативное сопротивление растеканию электрического тока. Чем меньше сопротивление — тем лучше, таким образом обеспечивается эффективность действия заземляющего устройства при выполнении функций защиты от действия электрического тока.

Электроды изготавливаются из меди, оцинкованной и черной стали. Профили сечения указаны на рисунке ниже:

Расчёт сопротивления

Правильный расчёт защитного заземления заключается в точном определении сопротивления растекания тока (Rз), которое зависит от множества факторов (влажности и плотности грунта, количества солей, конструктивных особенностей заземлительного устройства, диаметра и глубины погружения подключённого провода и др.).

Их снижение достигается путём уменьшения сопротивления растекания тока. Результатом такого снижения является уменьшение тока, проходящего сквозь тело человека при аварии.

В процессе расчёта заземления необходимо учитывать такой важный показатель, как удельное сопротивление грунта. Таблица ПУЭ позволяет узнать его для разных видов почвы:

  1. Песка с разным уровнем залегания подземных вод.
  2. Водонасыщенной супеси (пластинчатой и текучей).
  3. Пластичной и полутвёрдой глины.
  4. Суглинка.
  5. Торфа.
  6. Садовой земли.
  7. Чернозёма.
  8. Кокса.
  9. Гранита.
  10. Каменного угля.
  11. Мела.
  12. Глинистого мергеля.
  13. Пористого известняка.

Все представленные в таблице разновидности грунта отличаются разным уровнем влажности, которая также сказывается на конечном значении сопротивления растекания тока. Для его точного определения удельное сопротивление умножают на коэффициент сезонности. Эта цифра зависит от низшей температуры и способа расположения электродов (вертикального или горизонтального).

Помимо удельного сопротивления почвы (ρ), для подсчёта сопротивления растекания (Rз) необходимо знать длину электрода (l), диаметр прута (d) и глубину расположения средней точки заземлителя (h). Взаимосвязь этих величин отражается в формуле Rз = ρ/2πl∙ (ln (2l/d)+0.5ln ((4h+l)/(4h-l)).

Если основой заземлительной установки являются сваренные сверху вертикальные электроды (n), целесообразнее будет использовать формулу Rn = Rз/(n∙ Kисп), в которой буквами Kисп обозначается коэффициент использования электрода (с учётов влияния соседних). Его также легко найти в специальной таблице.

Независимо от выбранной формулы, при подсчёте защитного заземления следует принимать во внимание нормированное сопротивление заземлителя (для частного дома, источника тока или подстанции), размеры основных деталей конструкции и соединительных элементов, а также количество и метод соединения электродов (в ряд или в форме замкнутого контура). Проводить расчёт заземлительного контура имеет смысл только в том случае, если в качестве заземлителей используются искусственные элементы. Формул для определения сопротивления естественных заземлителей не существует

Формул для определения сопротивления естественных заземлителей не существует

Проводить расчёт заземлительного контура имеет смысл только в том случае, если в качестве заземлителей используются искусственные элементы. Формул для определения сопротивления естественных заземлителей не существует.

Заглянем в теорию

Рассмотрим пример – схема заземления с одиночным вертикальным заземлителем, забитым в землю. С ним соединён металлический корпус электроприбора, где произошло короткое замыкание – фаза соединилась с корпусом. При этом исходные условия: замыкание «металл – на металл», без учёта сторонних факторов, поэтому сопротивлением в точке контакта можно пренебречь. Сопротивление заземляющего проводника от прибора до земли тоже не учитываем, так как оно незначительное, когда используется достаточно большое сечение.

Далее при условии, что грунт вокруг заземлителя считаем однородным во всех направлениях, то и ток будет уходить в землю одинаково в этих же направлениях. При этом наибольшая плотность тока будет у самого заземлителя. Чем дальше от заземлителя, тем больше уменьшается его плотность. В итоге получается, что на пути тока сопротивление его движению с увеличением расстояния от заземлителя всё более уменьшается, потому что он проходит через постоянно увеличивающееся «сечение» проводника – земли. И напряжение, которое снижается на пути этого тока по закону Ома: самое большое на самом заземлителе, а при удалении плавно убывает. А на каком-то расстоянии от заземлителя напряжение станет пренебрежимо мало – приблизится к 0. Точка с таким напряжением – точка нулевого потенциала. По сути эта точка нулевого потенциала и есть та самая земля, с которой связан корпус электроприбора.

Сопротивление заземляющего устройства, это не электрическое сопротивление его металла – оно низкое, это не сопротивление между металлом штыря и землёй – при соблюдении определённых условий оно тоже небольшое. Это сопротивление земли между штырём и точкой нулевого потенциала.

Всё это отображается формулой Rз : Uф / Iкз. То есть – сопротивление заземляющего устройства будет равно фазовому напряжению, пришедшему на корпус, поделённому на ток короткого замыкания. На этой формуле всё и завязано.

Но параметров сопротивления одиночного заземлителя скорее всего будет недостаточно, чтоб организовать контур заземления, соответствующий требованиям ПУЭ. Как всё привести в соответствие? Площадь заземляющего электрода имеет решающее значение, поэтому самое очевидное решение – нужно забить рядом ещё один электрод. Но если забить их в непосредственной близости, то ток растекается, как и прежде, ничего не меняется. Для того чтоб поменять конфигурацию растекания нужно разнести заземляющие электроды подальше друг от друга. В этом случае получается разделение тока между ними – он стекает с каждого из них.

Однако существует зона, где они пересекаются. Получается, что это не простое параллельное соединение двух сопротивлений, за исключением примеров, когда заземлители очень далеко друг от друга. Но это очень непрактично, для реального устройства заземления потребуются огромные площади. Поэтому при расчётах удаления заземляющих электродов используют поправочные коэффициенты, которые учитывают их взаимное влияние – коэффициент экранирования.

Чтобы ещё уменьшить сопротивление контура заземления, нужно увеличить глубину погружения электрода, то есть увеличить его длину. Ведь чем длиннее заземлитель, тем больше площадь, способствующая растеканию тока. Этот эффект широко используется при изготовлении омеднённых штырей для комплектов заземления. Они забиваются в землю друг за другом соединяясь резьбовыми муфтами в единый электрод. При этом достигается нужная для параметров заземления глубина.

Соединяя электроды заземления горизонтальной связью, ещё снижается общее сопротивление заземляющего устройства

Влияние связи тоже учитывается, также принимаются во внимание, что её экранируют вертикальные электроды

Получается система из нескольких элементов, зависящих друг от друга:

Расстояние между вертикальными заземлителями.
Их количество.
Важно, на какую глубину они забиты.
Форма – прут, труба, уголок. Это разная площадь прилегания к земле.
Форма и длина горизонтальной связи.

То есть факторов достаточно много и по одной формуле всё рассчитывать некорректно

Остальные параметры для расчёта берутся из следующих понятий и величин

То есть факторов достаточно много и по одной формуле всё рассчитывать некорректно. Остальные параметры для расчёта берутся из следующих понятий и величин.

Определение подходящего контура

Прежде всего необходимо выбрать форму контура. Конструкция обычно выполняется в виде определенной геометрической фигуры или простой линии. Выбор конкретной конфигурации зависит от размеров и формы участка.

Наиболее распространенной схемой для создания защитного заземления выступает треугольная форма контура. По вершинам геометрической фигуры устанавливают электроды. Металлические штыри должны быть достаточно отдалены друг от друга, чтобы не препятствовать рассеиванию поступающих в них токов. Для обустройства защитной системы частного дома считается достаточным три электрода. Для организации эффективной защиты необходимо еще и правильно подобрать длину стержней.

Расчёт сопротивления

Правильный расчёт защитного заземления заключается в точном определении сопротивления растекания тока (Rз), которое зависит от множества факторов (влажности и плотности грунта, количества солей, конструктивных особенностей заземлительного устройства, диаметра и глубины погружения подключённого провода и др.).

Их снижение достигается путём уменьшения сопротивления растекания тока. Результатом такого снижения является уменьшение тока, проходящего сквозь тело человека при аварии.

В процессе расчёта заземления необходимо учитывать такой важный показатель, как удельное сопротивление грунта. Таблица ПУЭ позволяет узнать его для разных видов почвы:

  1. Песка с разным уровнем залегания подземных вод.
  2. Водонасыщенной супеси (пластинчатой и текучей).
  3. Пластичной и полутвёрдой глины.
  4. Суглинка.
  5. Торфа.
  6. Садовой земли.
  7. Чернозёма.
  8. Кокса.
  9. Гранита.
  10. Каменного угля.
  11. Мела.
  12. Глинистого мергеля.
  13. Пористого известняка.

Все представленные в таблице разновидности грунта отличаются разным уровнем влажности, которая также сказывается на конечном значении сопротивления растекания тока. Для его точного определения удельное сопротивление умножают на коэффициент сезонности. Эта цифра зависит от низшей температуры и способа расположения электродов (вертикального или горизонтального).

Помимо удельного сопротивления почвы (ρ), для подсчёта сопротивления растекания (Rз) необходимо знать длину электрода (l), диаметр прута (d) и глубину расположения средней точки заземлителя (h). Взаимосвязь этих величин отражается в формуле Rз = ρ/2πl∙ (ln (2l/d)+0.5ln ((4h+l)/(4h-l)).

Если основой заземлительной установки являются сваренные сверху вертикальные электроды (n), целесообразнее будет использовать формулу Rn = Rз/(n∙ Kисп), в которой буквами Kисп обозначается коэффициент использования электрода (с учётов влияния соседних). Его также легко найти в специальной таблице.

Независимо от выбранной формулы, при подсчёте защитного заземления следует принимать во внимание нормированное сопротивление заземлителя (для частного дома, источника тока или подстанции), размеры основных деталей конструкции и соединительных элементов, а также количество и метод соединения электродов (в ряд или в форме замкнутого контура). Проводить расчёт заземлительного контура имеет смысл только в том случае, если в качестве заземлителей используются искусственные элементы

Формул для определения сопротивления естественных заземлителей не существует

Формул для определения сопротивления естественных заземлителей не существует

Проводить расчёт заземлительного контура имеет смысл только в том случае, если в качестве заземлителей используются искусственные элементы. Формул для определения сопротивления естественных заземлителей не существует.

Конструкция контура заземления (заземлителя)

Контур заземления состоит из вертикально вбитых в землю металлических электродов (уголков, труб, круглой стали), соединенных между собой горизонтальным металлическим соединителем (полосой, уголком, трубой, арматурой, круглой сталью).

В качестве вертикальных электродов используется уголок 5 × 50 × 50 мм, а в качестве горизонтального соединителя — полоса 4 × 40 мм. Заземлители располагают либо в ряд, либо замкнутым контуром. Они вбиваются в дно траншеи или ямы глубиной около 0,5 — 0,7 м на глубину 1,5 — 3,5 метра. Не забитым оставляется только участок 20 см заземлителя. Расстояние между вбитыми электродами принимается кратными длине электродов.

Все соединения рекомендуется делать сваркой внахлест с проваркой швов и обязательным покрытием мест сварки антикоррозийной защитой. Остальная поверхность заземлителя не должна иметь какого-либо покрытия или окраски. После монтажа всех элементов, горизонтальный соединитель выводится в нужном месте из земли для последующего соединения с заземляющим проводником.

Материалы для контура заземления:

Элемент ⁄ материалСталь чернаяСталь оцинкованнаяСталь горячего цинкования, нержавеющая сталь
Круглая сталь электрода∅16 мм∅12 мм∅16 мм
Круглая сталь горизонтального соединителя∅10 мм∅10 мм∅10 мм
Прямоугольная или угловая сталь4 мм, сечение не менее 100 мм²3 мм, сечение не менее 75 мм²3 мм, сечение не менее 90 мм²
Труба∅32 мм, толщина стенки 3,5 мм∅25 мм, толщина стенки 2 мм∅25 мм, толщина стенки 2 мм

Следует разделять заземление защитное и функциональное. Последнее выполняется для правильной работы и защиты от помех специального оборудования. Заземляющий проводник, соединяющий заземлитель функционального заземления с шиной заземления, должен иметь сечение не менее:

  • Для медного — 10 мм².
  • Для алюминиевого — 16 мм².
  • Для стального — 75 мм².

В быту чаще всего устраивается защитное заземление. И для соединения заземлителя с шиной заземления, достаточно использовать проводник сечением равным тому, что приходит в дом до расщепления PEN. Если к дому приходит СИП 16 мм², то заземляющий проводник должен быть эквивалентным ему по проводимости (медь — 10 мм²). Также следует руководствоваться следующим правилом по подбору проводника, соединяющего защитное заземление с шиной — он должен иметь сечение не менее:

  • Для медного — 6 мм².
  • Для стального — 50 мм².
  • Алюминиевые проводники в качестве заземляющих проводников не используются.

Необходимость заземления

Несмотря на всю важность, расчёт защитного заземления и его установка стали обязательными относительно недавно. Ещё несколько десятилетий назад при обеспечении электроэнергией деревянных жилых домов проводили только нулевой провод и фазу, в то время как на производствах с целью обеспечения безопасности уже использовали заземление и зануление оборудования. В основе этих процессов лежит понятие нейтрали

В основе этих процессов лежит понятие нейтрали.

Этим термином в электрике принято обозначать место схождения трёх фаз, соединённых звездой. Вместе с заземлением эта точка образует глухозаземлённую нейтраль трансформатора. Чтобы заземлить электроприборы, их нужно соединить с нейтралью посредством специально приваренной шины. Для зануления оборудования нейтраль требуется соединить с нулевой шиной.

Сегодня в жилых и общественных зданиях заземляют водопроводные, канализационные, газопроводные трубы, а также распределительные электрощитки. Защитное заземление создают путём соединения с землёй металлических, не проводящих ток конструкций, которые могут оказаться под напряжением. Оно является обязательным для сетей:

  • Переменного тока — при напряжении от 380 В.
  • Постоянного тока — при напряжении от 440 В.

https://youtube.com/watch?v=6WN6m0gBxRs

Итоги

Подводя итог всему описанному в предыдущих главах, необходимо отметить следующие основные моменты:

Систематические проверки заземляющих контуров позволяют убедиться в их полной работоспособности. При решении проблемы касающейся того, каким прибором следует снимать показания – предпочтение отдается специальным многофункциональным устройствам, обеспечивающим высокую точность измерений

В процессе их проведения важно придерживаться общепринятых методик определения точных значений измеряемых величин. С полной формулой определения суммарного сопротивления всей заземляющей конструкции можно ознакомиться в соответствующих разделах ПУЭ

В дополнение к статье предлагаем для просмотра видео материалы, в которых показывают как измеряется сопротивление заземления с помощью различных многофункциональных приборов.

https://youtube.com/watch?v=mBGMmbyOqEs

В заключительной части обзора отметим, что для более подробного ознакомления со всеми рассмотренными вопросами следует обратиться к многочисленным источникам, широко представленным в сети. Там же можно найти большое количество тематических подборок и видео обзоров, позволяющих узнать о том, как проверить и точно измерить сопротивление заземляющих конструкций самого различного типа и класса.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий