Разновидности солнечных панелей
В зависимости от уровня производительности такие устройства подразделяются не следующие виды:
- Маломощные исполнения, как, например, солнечная батарея компактная переносная – используются для питания мелкой техники (телефоны, КПК и прочее);
- Универсальные устройства – прекрасно подходят для эксплуатации в полевых условиях;
- Солнечные элементы на подложке – наиболее распространенный вид, который может использоваться для питания довольно крупных объектов.
Виды солнечных батарей
Кроме того техника данного рода может функционировать на базе разных технологий: фотоэлектрические преобразователи, гелиоэлектростанции, солнечные коллекторы. Различают такие аппараты и по роду материала: кремниевые и пленочные. Наивысшей производительностью обладают фотоэлектрические устройства на основе монокристаллического кремния. У таких приборов КПД выше, чем у аналогов – до 22%.
Степень эффективности
Перед тем, как решать, где купить солнечные тепловые батареи, следует определить уровень нагрузки на такие устройства. После чего необходимо соотнести его с имеющейся свободной площадью для установки солнечных панелей. Именно совокупность этих двух факторов позволит правильно подобрать вариант исполнения таких устройств, что позволит получить максимально эффективный источник питания.
Солнечная панель своими руками
Эффективность самодельных устройств зависит от того, насколько точно соблюдены правила их установки
Например, при выборе монокристаллических фотоэлементов важно расположить их под нужным углом, чтобы обеспечить прямое попадание солнечных лучей на поверхность элементов. В этом плане проще выбрать поликристаллические батареи, так как она более стойко переносят изменение погодных условий
Но их производительность несколько ниже.
В покупных изделиях используется контроллер для солнечной батареи, в бытовых условиях можно применить шунтирующие диоды, в частности, диоды Шотке. Это позволит избежать разряжения батарей в пасмурную погоду или ночью. Для создания каркаса, удерживающего фотоэлементы, применяются материалы, которые не пропускают ИК-спектр сквозь поверхность. Такой нюанс позволит снизить интенсивность нагрева конструкции. Нередко для этой цели используется оргстекло. Для соединения всех элементов между собой применяется пайка. В конце полученное изделие герметизируется обычным силиконовым герметиком.
Смотрим видео, полный процесс изготовления своими руками:
Таким образом, главное, что следует знать при выборе солнечных панелей, каков уровень их производительности на конкретном участке и с определенной величиной нагрузки. В результате можно обеспечить питание электроприборов и техники на неограниченное время, так как солнечные батареи относятся к возобновляемым альтернативным источникам энергии. Учитывая довольно широкий выбор таких устройств, можно подобрать наиболее подходящее исполнение под определенные нужды.
Солнечная батарея и фотоэффект
Для получения электроэнергии от солнечной батареи необходимо осуществить фотоэффект. Этот процесс связан с физическим явлением p-n перехода, который происходит в фотоэлементе. Конструктивно фотоэлемент состоит из двух пластин полупроводникового материала. Одна из используемых пластин содержит атомы бора, а вторая атомы мышьяка. При этом верхний слой характеризуется переизбытком электронов (область электронов), а нижняя – их нехваткой (так называемая дырочная область). В данном случае на границе этих пластин поддерживается электронно-дырочный переход, так называемый p-n переход.
В результате попадания на фотоэлемент солнечных лучей (фотонов) происходит освещение пластин и оба слоя взаимодействуют как электроды обыкновенной батареи – возникает электродвижущая сила (ЭДС).
.
Солнечный луч возбуждает электроны, которые начинают перемещаться из одной пластины в другую. Для снятия электрической энергии на обе поверхности напаивают тонкие слои проводника и подключают к нагрузке. Выработка этой энергии не связана с химическими реакциями, поэтому такая солнечная батарея может прослужить довольно долгий срок.
Основа для большинства солнечных батарей – кремний
Кремний для производства солнечных батарей может быть монокристаллическим или поликристаллическим. Внешне монокристаллический кремний можно отличить по равномерному чёрно-серому цвету поверхности фотоэлемента. Этот вид материала выращивают в промышленных условиях, после чего специальной нитью разрезают на тонкие пластины. Второй тип представляет собой новое поколение элементов, сделанных из более доступного поликристаллического кремния. Изготовление проходит методом литья. Выглядит материал как, поверхность с неравномерным синим переливом. Кроме того, в кремний добавляют в определенном количестве мышьяк и бор.
Учёные вплотную изучают вопросы, которые могли бы улучшить выработку электроэнергии в солнечных электростанция при помощи повышения КПД солнечной батареи. Для этого в тонкослойных ячейках может содержаться не только кремний, но и галлий, арсенид, кадмий, медь, селен и многие другие материалы. Так же большой проблемой на пути улучшения эффективности солнечных батарей, является избыточное тепло, которое возникает при нагреве пластин солнечных элементов. Разрабатывается много путей для отвода данного тепла от солнечной батареи. Ведь КПД панелей в редких случаях превышает 25 %.
Типы солнечных батарей
В настоящее время на рынке можно найти пять основных типов солнечных батарей.
Наибольшую популярность получили солнечные батареи из поликристаллических фотоэлементов. Эффективность таких панелей в среднем составляет 12-14 %.
Панели из монокристаллических фотоэлементов характеризуются более высоким КПД (14-16 %). Такие панели немного дороже чем панели из поликристаллического кремния. Так же ячейки имеют форму многоугольника и из-за этого не полностью заполняют пространство солнечной батареи, что приводит к более низкой эффективности всей батареи по отношению к одной ячейки.
Солнечные батареи из аморфного кремния имеют наименьшую эффективность ( 6-8 %), но в то же время имеют наиболее низкую себестоимость производимой энергии.
Солнечные батареи на основе Теллурид Кадмия (CdTe) представляют собой тонкопленочную технологию производства солнечных проебразователей. Полупроводниковые слои наносят на панель толщиной всего в несколько сотен микрон. Производство является менее вредным для окружающей среды. Эффективность солнечных батарей на основе Теллурид Кадмия составляет порядка 11-12 %.
Солнечные батареи на основе смеси Индия, Галлия, Меди, Селена (CIGS) так же является тонкопленочной технологией производства фотоэлементов. Эффективность варьируется от 10 до 15 %. Эта технология еще мало распространена на рынке, однако очень быстро развивается.
Немного видеоматериала о том как именно происходит процесс производства солнечной батареи
Устройство солнечных батарей
Солнечная батарея – это набор фотоэлементов. Эти полупроводниковые (фотоэлектрические) устройства, объединенные в панели, преобразуют энергию солнечных лучей непосредственно в постоянный ток.
Конструктивно гелиопанель (она представлена схематически ниже на фото) в общем виде состоит из следующих частей:
- рамки;
- стеклянного покрытия;
- фотоэлементов;
- токопроводящих металлических контактов;
- основы (обратной стенки);
- пленки из полимерного материала.
Устройство гелиопанели
Корпус (рамка, основа, стеклянное покрытие) предназначены для фиксации фотоэлементов, защиты их от разрушительного воздействия внешней среды. Каркасные детали изготавливают из диэлектрических материалов. Фотоэлементы к корпусу крепятся таким способом, чтобы их замена была возможной.
Фотоэлектрические преобразователи (ФЭП) на сегодняшний день изготавливают из различных химических элементов. Но широкое промышленное распространение получили кремниевые фотоэлементы. Эти пластины состоят из двух, отличающихся физическими свойствами, слоев кремния.
Кремний – это полупроводник. Каждый слой батареи имеет свои особенности:
- внешний слой фотоэлектрического преобразователя содержит избыточное количество электронов (n-слой) – выступает в роли катода (отрицательного полюса);
- во внутреннем слое электронов не хватает (p-слой) – является анодом (положительным полюсом).
В результате неоднородности (разного типа проводимости) кремниевых полупроводниковых слоев ФЭП между ними устанавливается р-n переход. Возникает электронно-дырочная проводимость.
Неоднородность слоев фотоэлемента достигается несколькими способами:
- добавлением в один и тот же полупроводниковый материал разнообразных примесей (легирование);
- соединением разных по свойствам полупроводников;
- изменением состава;
- комбинированием нескольких способов.
Коэффициент полезного действия (КПД) заводских ФЭП в среднем составляет 16 %. Эффективность лабораторных моделей достигла почти 45 %. Идет процесс усовершенствования гелиопанелей.
Устройство и принцип работы солнечных панелей
Принцип работы солнечной батареи Первый вопрос, который волнует владельцев частных домов: «Как работает солнечная батарея для электроснабжения?». Давайте разбираться. Принцип функционирования заключается в эффекте полупроводников. Кремний отлично справляется с этой задачей
Однако важно понять, как возникает эффект полупроводников при нагревании панелей
Фотоэлементы являются полупроводниками. А любой полупроводник — это такой тип материала, в атомарной структуре которого либо есть лишние электронные пары, либо их нет. Исходя из этого можно классифицировать полупроводник как материал, состоящий из двух слоев с разной проводимостью. Именно они и выступают в качестве катода (n) и анода (p) при подключении полупроводника (а в нашем случае фотоэлемента) в электрическую цепь.
Затем электроны переходят в цепь и проходя через нагрузку (аккумулятор) накапливают энергию, которая в свою очередь может быть потрачена на освещение, обогрев или работу тех или иных электроприборов.
Принцип работы солнечной электростанции для жилого дома
Разумеется, один фотоэлемент вырабатывает сравнительно небольшое количество энергии, поэтому солнечная батарея для частного дома должна быть многофункциональной. Это модули из множества фотоэлементов, объединенных в общую цепь – панель.
Также важно помнить, как правильно крепить модуль на крышу дома. Размещать панели нужно на хорошо освещенном участке, на балконе, веранде или прилегающей территории. Размещать панели нужно на хорошо освещенном участке, на балконе, веранде или прилегающей территории
Размещать панели нужно на хорошо освещенном участке, на балконе, веранде или прилегающей территории.
Чтобы лучи падали под углом в 90 градусов (южное направление). А сила тока солнечной системы зависит от интенсивности освещения.
Рассмотрим устройство солнечных батарей. В панели каждый фотоэлемент крепится в своей ячейке, чтобы была возможность легкой замены в случае поломки или выхода из строя отдельных блоков разной мощности. Сама конструкция для защиты от факторов окружающей среды, а также механического или иного физического воздействия покрывается прочной пластмассовой пластиной или каленым защитным стеклом.
Виды солнечных батарей
Кроме размера и мощности, панели отличаются способом, которым изготавливаются из кремния отдельные элементы.
Элементы из монокристаллического кремния
Элементы солнечных батарей, изготовленные из монокристаллического кремния, имеют форму квадрата с закругленными углами. Это связано с технологией изготовления:
- из расплавленного кремния высокой степени очистки выращивается кристалл цилиндрической формы;
- после остывания у цилиндра обрезаются края, и основание из круга принимает форму квадрата с закругленными углами;
- получившийся брусок разрезается на пластины толщиной 0,3 мм;
- в пластины добавляются бор и фосфор и на них наклеиваются контактные полоски;
- из готовых элементов собирается ячейка батареи.
Готовая ячейка закрепляется на основании и закрывается стеклом, пропускающим ультрафиолетовые лучи или ламинируется.
Такие устройства отличаются самым высоким КПД и надежностью, поэтому устанавливаются в важных местах, например, в космических аппаратах.
Фотоэлементы из мульти-поликристаллического кремния
Кроме элементов из цельного кристалла, есть устройства, в которых фотоэлементы изготавливаются из поликристаллического кремния. Технология производства похожа. Основное отличие в том, что вместо кристалла круглой формы используется прямоугольный брусок, состоящий из большого количества мелких кристаллов различных форм и размеров. Поэтому элементы получаются прямоугольной или квадратной формы.
В качестве сырья берутся отходы производства микросхем и фотоэлементов. Это удешевляет готовое изделие, но ухудшает его качество. Такие устройства имеют меньший КПД – в среднем 18% против 20–22% у монокристаллических батарей. Однако вопрос выбора достаточно сложный. У разных производителей цена одного киловатт мощности монокристаллических и поликристаллических панелей может быть одинаковой или в пользу любого вида устройств.
Фотоэлементы из аморфного кремния
В последние годы распространение получили гибкие батареи, которые легче жестких. Технология их изготовления отличается от технологии изготовления моно- и поликристаллических панелей – на гибкую основу, обычно стальной лист, напыляются тонкие слои кремния с добавками до достижения необходимой толщины. После этого листы разрезаются, к ним приклеиваются токопроводящие полоски и вся конструкция ламинируется.
КПД таких батарей примерно в 2 раза меньше, чем у жестких конструкций, однако, они легче и более прочные за счет того, что их можно сгибать.
Такие приборы дороже обычных, но им нет альтернативы в походных условиях, когда основное значение имеет легкость и надежность. Панели можно нашить на палатку или рюкзак, и заряжать аккумуляторы во время движения. В сложенном виде такие устройства похожи на книгу или свернутый в рулон чертеж, который можно поместить в футляр, напоминающий тубус.
Кроме зарядки мобильных устройств в походе, гибкие панели устанавливаются в электромобилях и электросамолетах. На крыше такие приборы повторяют изгибы черепицы, а если в качестве основы использовать стекло, то оно приобретает вид тонированного и его можно вставить в окно дома или теплицу.
Технические характеристики: на что обратить внимание
Главным параметром фотоэлементной системы является мощность. Напряжение такой установки достигает максимума при ярком свете и зависит от количества соединенных последовательно элементов, которое почти во всех конструкциях равно 36. Мощность зависит от площади одного элемента и количества цепочек по 36 штук, соединенных параллельно.
Кроме самих батарей, важно подобрать контроллер зарядки аккумуляторов и инвертор, преобразующий заряд аккумуляторных батарей в напряжение сети, а также сами панели. В аккумуляторных батареях есть допустимый ток зарядки, который нельзя превышать, иначе система выйдет из строя
Зная напряжение аккумуляторов, легко определить мощность, необходимую для зарядки. Она должна быть больше мощности солнечной электростанции, иначе в солнечный день часть энергии окажется неиспользованной
В аккумуляторных батареях есть допустимый ток зарядки, который нельзя превышать, иначе система выйдет из строя. Зная напряжение аккумуляторов, легко определить мощность, необходимую для зарядки. Она должна быть больше мощности солнечной электростанции, иначе в солнечный день часть энергии окажется неиспользованной.
Контроллер обеспечивает заряд аккумуляторов и также должен иметь мощность, позволяющую полностью использовать энергию солнца.
К инвертору подключается оборудование, получающее энергию от ФЭС, поэтому его мощность должна соответствовать суммарной мощности электроприборов.
Кроме мощности и напряжения, важно выбрать фирму-производителя. Такое оборудование приобретается на срок несколько десятков лет, поэтому экономить на качестве нельзя
Производители, давно работающие на рынке, это понимают и дорожат своей репутацией. Можно почитать отзывы о них в интернете и выбрать с самыми положительными.
Обходные диоды
Еще одним элементом, который очень желательно установить, но которым почему-то при конструировании солнечных генераторов все пренебрегают, – обходной или, как говорят, байпасный (англ. bypass — обход). Для чего он нужен? Взглянем на схему, приведенную выше. Нас интересует верхний по схеме модуль, состоящий из элементов SZ1-SZ30.
Пока все элементы освещены и исправны, батарея выдает заданные напряжение и ток. Закроем один элемент рукой. Оказавшись в тени, фотоэлемент начинает «буксовать» – вырабатываемое им напряжение падает, сопротивление возрастает в десятки раз. Результат – весь модуль практически перестает работать, поскольку все элементы в нем включены последовательно. То же самое произойдет, если какой-либо элемент будет разбит или выйдет из строя по любой другой причине. А теперь взглянем на схему ниже:
Пока все элементы работают, шунтирующие их диоды заперты обратным напряжением, вырабатываемым самими фотоэлементами. Как только элемент по каким-либо причинам перестанет работать, упадет вырабатываемое им напряжение. Диод откроется и пустит ток в обход неисправной ячейки. В результате весь модуль будет продолжать работать, а неисправность выльется лишь в небольшое падение напряжения, которое вырабатывала отказавшая ячейка.
Применение солнечных батарей
Кроме космонавтики и обеспечения частных домов электроэнергией, панели или батареи солнечные применяют в следующих сферах:
- Автомобилестроение. Экологичный транспорт приобретает популярность, ведь выхлопы бензина и газов загрязняют атмосферу, а цены на топливо постоянно растут. Машины на солнечной энергии способны развивать скорость до 140 км/ч.
- Эксплуатация водного транспорта (барж, катеров, яхт). Такой транспорт можно встретить в Турции. Лодки развивают небольшую скорость (до 10 км/ч), и это позволяет туристом осмотреть достопримечательности и роскошные пейзажи этой страны.
- Энергообеспечение зданий. В развитых странах Европы многие муниципальные здания и сооружения полностью обеспечивают свои нужды с помощью энергии, которую выделяют солнечные панели.
- Самолетостроение. Благодаря наличию батарей, самолет в полете может длительное время не расходовать топливо.
Принцип работы солнечных батарей
Солнечные батареи считаются очень эффективным и экологически чистым источником электроэнергии. В последние десятилетия данная технология набирает популярность по всему миру, мотивируя многих людей переходить на дешевую возобновляемую энергию. Задача этого устройства заключается в преобразовании энергии световых лучей в электрический ток, который может использоваться для питания разнообразных бытовых и промышленных устройств.
Правительства многих стран выделяют колоссальные суммы бюджетных средств, спонсируя проекты, которые направлены на разработку солнечных электростанций. Некоторые города полностью используют электроэнергию, полученную от солнца. В России эти устройства часто используются для обеспечения электроэнергией загородных и частных домов в качестве отличной альтернативы услугам централизованного энергоснабжения. Стоит отметить, что принцип работы солнечных батарей для дома достаточно сложный. Далее рассмотрим подробнее, как работают солнечные батареи для дома подробно.
Как было сказано раньше, принцип работы заключается в эффекте полупроводников. Кремний является одним из самых эффективных полупроводников, из известных человечеству на данный момент.
При нагревании фотоэлемента (верхней кремниевой пластины блока преобразователя) электроны из атомов кремния высвобождаются, после чего их захватывают атомы нижней пластины. Согласно законам физики, электроны стремятся вернуться в свое первоначальное положение. Соответственно, с нижней пластины электроны двигаются по проводникам (соединительным проводам), отдавая свою энергию на зарядку аккумуляторов и возвращаясь в верхнюю пластину.
Технические характеристики
Устройство солнечной батареи довольно простое, и состоит из нескольких компонентов:
- Непосредственно фотоэлементы / солнечная панель;
- Инвертор, преобразовывающий постоянный ток в переменный;
- Контроллер уровня заряда аккумулятора.
Аккумуляторы для солнечных батарей купить следует с учетом необходимых функций. Они накапливают и отдают электроэнергию. Запасание и расход происходит в течение всего дня, а ночью накопленный заряд только расходуется. Таким образом, происходит постоянное и непрерывное снабжение энергией.
Чрезмерная зарядка и разрядка батареи укорачивает ее эксплуатационный срок. Контроллер заряда солнечной батареи автоматически приостанавливают накопление энергии в аккумуляторе, когда он достиг максимальных параметров, и отключают нагрузку устройства при сильной разрядке.
(Tesla Powerwall – аккумулятор для солнечных панелей на 7 КВт – и домашняя зарядка для электромобилей)
Сетевой инвертор для солнечных батарей является самым важным элементом конструкции. Он преобразовывает полученную от солнечных лучей энергию в переменный ток различной мощности. Являясь синхронным преобразователем, он совмещает выходное напряжение электрического тока по частоте и фазе со стационарной сетью.
Фотоэлементы могут соединяться как последовательно, так и параллельно. Последний вариант увеличивает параметры мощности, напряжения и тока и позволяет устройству работать, даже если один элемент потеряет функциональность. Комбинированные модели изготовлены с использованием обеих схем. Эксплуатационный срок пластин около 25 лет.
Применение солнечных батарей
Использование солнечной энергии для создания солнечных электростанций является очень выгодным и не таким уж дорогим источником электроэнергии. Широкое применение солнечных батарей нашли не только в промышленности и других отраслях, но и для индивидуальных нужд.
Со временем солнечные батареи становятся дешевле и все большее число людей приобретают их и используют в качестве источника альтернативной энергии. На солнечных панелях работают калькуляторы, радиоприемники, фонари на аккумуляторах с подзарядкой от солнечной панели.
Есть даже корейский мобильный телефон, который может заряжаться от солнечных панелей. Появились небольшие переносные электростанции на солнечных панелях, которыми пользуются туристы, рыбаки, охотники. Сейчас никого не удивишь автомобилем с солнечной панелью на крыше.
Области применения солнечных панелей
- Портативная электроника. Для снабжения электричеством и(или) подзарядки аккумуляторных батареи разной бытовой электроники.
- Электромобили. Подзарядка автотранспорта.
- Авиация. Разработка самолета, использующего только энергию солнца.
- Энергообеспечение зданий. Электроснабжение дома, за счет размещения крупных солнечных батарей на крышах.
- Энергообеспечение населённых пунктов. Создание солнечных электростанций.
- Дорожное покрытие. Дороги, покрытые солнечными панелями, для освещения их же в ночное время.
- Использование в космосе. Электроснабжение космических аппаратов.
- Использование в медицине. Внедрение под кожу миниатюрную солнечную батарею для обеспечения работы приборов, имплантированных в тело.
Технология изготовления
Вначале следует спаять фотоэлементы между собой. Если вы купили элементы с металлическими выступами, то тогда можно просто спаять ушки батарей между собой. Делать это нужно очень внимательно и аккуратно. После пайки соединенные компоненты необходимо приклеить к подложке в верхней части панели. Это лучше сделать при помощи специального силиконового клея, который никак не препятствует проникновению солнечных лучей. Кроме того, он способствует нормальному теплообмену. Однако, не переусердствуйте с клеем, так как это может привести к повреждению батарей. Клеить нужно только центр клеток. Далее все элементы нужно соединить с проводом, который подается в одной из заранее предусмотренных вентиляционных отверстий. Для закрепления провода к солнечным элементам лучше использовать силиконовую замазку. Интересное: Солнечная панель своими руками.
На следующем этапе поверх панелей устанавливается оргстекло. Однако, до этого следует подключить диод Шоттки от чувствительных теплопроводящих компонентов. Этот диод послужит блокирующим устройством, которое защитит фотоэлементы при перепадах напряжения. Кроме того, диод Шоттки будет отключать питание системы при маленькой мощности электросети. Так аккумуляторы, заряжаемые от солнца, не будут разряжаться при прекращении питания. Когда диод будет подключен, можно ставить оргстекло и закреплять его винтами. Технология изготовления солнечных панелей является достаточно простой и понятной
Единственное, важно правильно соблюдать последовательность соединения, иначе вся система не будет работать
https://youtube.com/watch?v=3apKOZn-_B4
Как работает солнечная батарея
Принцип работы солнечной батареи основан на наличии полупроводника в виде двух пластин, соединенных друг с другом. Каждая пластина изготавливается из кремния с использованием дополнительных примесей. Благодаря этому пластины обладают своими уникальными свойствами. Первая из них имеет избыток валентных электронов, а вторая имеет недостаток этих электронов. Эти полупроводники получили название n и p. Если эти полупроводники соединить в единое целое, то можно получить PN-переход в месте контакта между ними. В то время, когда на батарею попадают прямые солнечные лучи, на обеих сторонах этого перехода начинают накапливаться положительные и отрицательные плавающие нагрузки. В результате генерируется напряжение и возникает магнитное поле. Если подсоединить к такому элементу провод, по нему потечет электричество.
Как подключить солнечную батарею
Как только вы изготовите солнечную панель, можно начинать заниматься ее подключением. Можно не подключать ее напрямую к сети, чтобы избежать потерь электроэнергии. То есть, желательно установить автономную систему с аккумуляторами. Они будут заряжаться от солнечных батарей каждый день и быстро разряжаться. При этом, глубина разрядки может быть довольно существенной. Поэтому, аккумуляторы могут быстро выйти из строя. Для того, чтобы этого не произошло, лучше оставить подключение к сети через гибридный батарейный инвертор. Это устройство будет отдавать фотоэлементам приоритет при распределении нагрузки. Инвертор не будет отдавать излишки электроэнергии в сеть, а будет передавать ее на аккумуляторы. Такой вариант является одним из наиболее оптимальных. Эта система состоит из гибридного инвертора, контроллера заряда солнечных панелей и аккумуляторов. Такой механизм сможет работать не только как основная, но и как резервная система электропитания.
Размеры панелей
Ошибка №11
Чем больше, тем мощнее, а значит лучше.
Например, попадаются экземпляры на 12В, где в одном корпусе собрано не 36 элементов, как в стандартном варианте, а сразу 72шт. Две цепочки по 36шт включенных параллельно.
Однако во-первых, при монтаже больших размеров высока вероятность повреждения панелей.
А дальше монтажной коробки они не ремонтопригодны.
Кстати, по поводу этой коробки. В последних моделях она как правило залита компаундом и доступа к контактам и диодам вы не имеете.
Ошибка №12
В старых моделях она “пустая”.
Некоторые этим пользовались и переподключали контакты самостоятельно, делая из 12 вольтовой панельки 24-х вольтовую.
Типы солнечных батарей
Выделяют несколько типов солнечных батарей: поли- и монокристаллические, а также аморфные. Монокристаллические являются наименее продуктивными, но при этом самыми недорогими. В связи с этим их использование оправдано в качестве дополнительных источник энергии на случай отключения централизованной подачи электроэнергии. Поликристаллы занимают промежуточные позиции по этим двум параметрам, в связи с чем могут быть использованы в отдаленных районах, лишенных централизованной подачи электроэнергии.
Аморфные солнечные батареи отличаются высокой эффективностью, однако и очень высокой стоимостью. В их основу входит аморфный кремний.
Данные разработки еще не вышли на промышленный уровень и находятся на экспериментальной стадии.
Как используется солнечная энергия
Существует два основных способа преобразования солнечной энергии. После выполнения определенных действий она превращается в тепло и электричество. Именно первый вариант стал использоваться в первую очередь, при котором тепловая энергия солнца собиралась с помощью специальных коллекторов (рис. 1). Собранное тепло передается теплоносителю и далее осуществляется его практическое применение. Подобные системы используются для дома при устройстве отопления и подачи горячей воды. Во втором случае солнечная энергия напрямую превращается в электрическую. Данный процесс осуществляется с использованием физических свойств фотоэлектрических элементов. Эти качества похожи на природный фотосинтез, в результате которого солнечные лучи превращаются в другие виды материи. Действие солнечной батареи и производство электроэнергии происходит по аналогичной схеме в дневное и ночное время.
В данном случае все зависит от материала, используемого в солнечных панелях. В большинстве устройств применяется кремний, соединенный с медью, кадмием, индием. Полученные таким образом полупроводники, под влиянием света начинают вырабатывать электрический ток. Наиболее высокий КПД у фотоэлектрических панелей из монокристаллического кремния. Другие виды элементов – поликристаллические и аморфные, считаются менее эффективными, обладают более низким КПД и стоят значительно дешевле.
Определенное количество фотоэлементов объединяются вместе, и становятся общими работающими солнечными батареями. Кроме того, гелиосистема включает в себя инвертор для преобразования напряжения, контроллер для управления зарядкой-разрядкой, а также один или несколько аккумуляторов.
Устройство солнечной батареи
Батарея состоит из модулей, объединяющих последовательно соединенные полупроводниковые фотоэлементы. Большинство фотоэлементов производится из кремния. Ячейки панелей используют фотогальванический эффект – ток образуется во время освещения полупроводника или диэлектрика. Либо ток образуется электродвижущей силой при разомкнутой цепи на освещаемом образце. Фотогальванические элементы заключены в корпус. Верхняя часть батареи покрыта стеклом, через которое проникают фотоны света. Так же стекло защищает от вредных воздействий элементы батареи. Крышка с креплением из пластика надежно закрывает заднюю часть модуля батареи. Чтобы достичь необходимого соотношения напряжения и силы тока соединение модулей производится последовательно и параллельно. Передача энергии от солнечных батарей конечному потребителю производится через инверторы напряжения. Преобразованная энергия хранится в батареях.
Способы монтажа бытовых гелиоустановок
В установке солнечных батарей нет ничего сложного. Самое главное — грамотно разместить модули
При монтаже важно придерживаться определенного угла наклона, который должен соответствовать географической широте местности. В процессе установки нужно также соблюдать азимут. Для северо-восточных он составляет 180 градусов
Для северо-восточных он составляет 180 градусов.
Зимой КПД электростанции с солнечными батареями может упасть до минимальных значений, поскольку обильные снегопады будут препятствовать попаданию лучей солнца на наружную поверхность фотоэлектрических элементов
Поэтому при монтаже важно учесть, что на крыше потребуется свободное место для очистки конструкции от налипшего снега и грязи. Впрочем, этих хлопот можно избежать, если зафиксировать солнечные панели на поверхности южной стены под углом 60–80 градусов. На практике для коттеджей применяют разные варианты расположения фотоэлектрических модулей:
На практике для коттеджей применяют разные варианты расположения фотоэлектрических модулей:
- кровля — дополнительно потребуется установка надежной опорной конструкции из металлопрофилей или направляющих рельс;
- стены — в данном случае на фасад здания монтируется рамная система для удержания фотопанелей «на весу»;
- приусадебная территория — альтернативный вариант расположения батарей, когда кровля дома сильно затенена или не рассчитана на дополнительную нагрузку.
Свободное размещение имеет множество преимуществ, но требует наличия достаточного пространства на приусадебном участке. Чтобы автоматизировать процесс наклона и движения фотоэлектрических панелей по ходу солнца, дополнительно рекомендуется использовать специальные шарнирные конструкции с электроприводом.
Окупаемость и срок эксплуатации
Применение солнечных батарей позволит сэкономить на освещении и отоплении, независимо от времени года. Самые большие показатели энгергоэффективности гелиосистемы демонстрируют в южных широтах, где количество солнечных дней преобладает. Это и неудивительно, так как обязательным условием высокопродуктивной работы электростанции является стабильное поступление инфракрасного излучения и видимого света на поверхность фотоэлектрических элементов.
По статистике, солнечные батареи для частного дома мощностью 4–5 кВт при постоянном использовании окупают себя за 8–10 лет, после чего работают впрок. При этом срок эксплуатации составляет в среднем 20-25 лет, а вот аккумуляторные батареи придется менять через каждые 5-6 лет. Многим такие сроки окупаемости покажутся большими, но в действительности оно того стоит, учитывая, что в скором времени ископаемых ресурсов на планете практически не останется, а стоимость одного киловатта электроэнергии возрастет в разы.