Проводники в электростатическом поле
Проводниками являются металлы, электролиты (растворы, проводящие ток) плазма. В металлах носителями зарядов являются свободные электроны, в электролитах – положительные и отрицательные ионы, в плазме – свободные электроны и ионы.
У большинства металлов практически каждый атом теряет электрон и становится положительным ионом. Например, у меди в 1 м3 свободных электронов 1029. Свободные электроны в металлах находятся в непрерывном беспорядочном движении. Скорость такого движения примерно равна 105 м/с (100 км/с).
Не смотря на наличие внутри тела зарядов (свободных электронов и ионов), электрического поля внутри проводника нет. Отдельные заряженные частицы создают микроскопические поля. Но эти поля внутри проводника в среднем компенсируют друг друга (рис. 1).
Если бы это условие не выполнялось, то свободные заряды, под действием кулоновских сил, пришли бы в движение. Они двигались бы до тех пор, пока действующая на них сила не обратилась бы в нуль.
Рис. 1
Поместим незаряженный проводник, например, металл, в однородное электростатическое поле с напряженностью \(~\vec E_0\). На свободные электроны начинают действовать электрические силы \(\vec F\), под действием которых электроны приходят в движение (рис. 2). Продолжая беспорядочное движение, электроны начинают смещаться в сторону действия силы (скорость смещения порядка 0,1 мм/с).
Рис. 2
На одной поверхности проводника образуется область с недостатком электронов, на противоположной – с избытком электронов. Это приводит к появлению еще одного электрического поля с напряженностью \( \vec E_{np}\) (рис. 3).
Рис. 3
Общая напряженность \( \vec E\) электрического будет равна
\( \vec E = \vec E_0 + \vec E_{np}, \;\; E = E_0 – E_{np}.\)
Электрическая сила \(F\), действующая на свободные электроны с зарядом q:
\(F = q \cdot E.\)
По мере смещения электронов, заряд на поверхности увеличивается. Это приводит к увеличению напряженности \(E_{np}\) и уменьшению общей напряженности \(E\) (т.к. \(E = E_0 – E_{np}\)). И в какой-то момент напряженность \(E_{np}\) становится равной напряженности внешнего поля \(E_0\), т.е. \(E_{np} = E_0\), и общая напряженность поля внутри проводника становится равной нулю.
Электрическая сила \(F\) в этот момент также становится равной нулю, электроны перестают смещаться, но беспорядочное движение не прекращается. На поверхности проводника остаются электрические заряды.
Явление возникновения электрических зарядов на поверхности проводника под воздействием электрического поля называется электростатической индукцией, а возникшие заряды – индуцированными.
Доля электронов, которые оказались на поверхности, очень мала. Например, если к медной пластинке толщиной в 1 см приложить напряжение в 1000 В, то эта доля составляет 10–10 % от всех свободных электронов.
Каким бы способом ни был заряжен проводник, внутри него поле отсутствует. Это позволяет использовать заземленные полые проводники со сплошными или сетчатыми стенками для электростатической защиты от внешних электростатических полей. Так, например, для защиты военных складов, служащих для хранения взрывчатых веществ, от удара молнии их окружают заземленной проволочной сетью.
Впервые явление электростатической защиты было обнаружено М.Фарадеем в 1836 году. Он провел интересный опыт. Большая деревянная клетка была оклеена тонкими листами олова, изолирована от земли и сильно заряжена. В клетке находился сам Фарадей с очень чувствительным электроскопом. Несмотря на то, что при приближении к клетке тел, соединенных с землей, проскакивали искры, внутри клетки электрическое поле не обнаруживалось.
Электропроводность древесины.
Способность проводить электрический ток характеризует электрическое сопротивление древесины. В общем случае полное сопротивление образца древесины, размещенного между двумя электродами, определяется как результирующее двух сопротивлений: объемного и поверхностного. Объемное сопротивление численно характеризует препятствие прохождению тока сквозь толщу образца, а поверхностное сопротивление определяет препятствие прохождению тока по поверхности образца. Показателями электрического сопротивления служат удельное объемное и поверхностное сопротивление. Первый из названных показателей имеет размерность ом на сантиметр (ом х см) и численно равен сопротивлению при прохождении тока через две противоположные грани кубика размером 1X1X1 см из данного материала (древесины). Второй показатель измеряется в омах и численно равен сопротивлению квадрата любого размера на поверхности образца древесины при подведении тока к электродам, ограничивающим две противоположные стороны этого квадрата. Электропроводность зависит от породы древесины и направления движения тока. В качестве иллюстрации порядка величии объемного и поверхностного сопротивления в табл. 22 приведены некоторые данные.
Таблица 22. Сравнительные данные об удельном объемном и поверхностном сопротивлении древесины.
Порода и направление | Влажность, % | Удельное объемное сопротивление, ом х см | Удельное поверхностное сопротивление, ом |
Береза, вдоль волокон | 8,2 | 4,2 х 1010 | 4,0 х 1011 |
Береза, поперек волокон | 8,0 | 8,6 х 1011 | 2,8 х 1012 |
Бук, вдоль волокон | 9,2 | 1,7 х 109 | 9,4 х 1010 |
Бук, поперек волокон | 8,3 | 1,4 х 1010 | 7,9 х 1010 |
Для характеристики электропроводности наибольшее значение имеет удельное объемное сопротивление. Сопротивление сильно зависит от влажности древесины. С повышением содержания влаги в древесине сопротивление уменьшается. Особенно резкое снижение сопротивления наблюдается при увеличении содержания связанной влаги от абсолютно сухого состояния до предела гигроскопичности. При этом удельное объемное сопротивление уменьшается в миллионы раз. Дальнейшее увеличение влажности вызывает падение сопротивления лишь в десятки раз. Это иллюстрируют данные табл. 24.
Таблица 23. Удельное объемное сопротивление древесины в абсолютно сухом состоянии.
Порода | Удельное объемное сопротивление, ом х см | |
поперек волокон | вдоль волокон | |
Сосна | 2,3 х 1015 | 1,8 х 1015 |
Ель | 7,6 х 1016 | 3,8 х 1016 |
Ясень | 3,3 х 1016 | 3,8 х 1015 |
Граб | 8,0 х 1016 | 1,3 х 1015 |
Клен | 6,6 х 1017 | 3,3 х 1017 |
Береза | 5,1 х 1016 | 2,3 х 1016 |
Ольха | 1,0 х 1017 | 9,6 х 1015 |
Липа | 1,5 х 1016 | 6,4 х 1015 |
Осина | 1,7 х 1016 | 8,0 х 1015 |
Таблица 24. Влияние влажности на электрическое сопротивление древесины.
Порода | Удельное объемное сопротивление (ом х см) поперек волокон при влажности древесины (%) | ||
22 | 100 | ||
Кедр | 2,5 х 1014 | 2,7 х 106 | 1,8 х 105 |
Лиственница | 8,6 х 1013 | 6,6 х 106 | 2,0 х 105 |
Поверхностное сопротивление древесины также существенно снижается с увеличением влажности. Повышение температуры приводит к уменьшению объемного сопротивления древесины. Так, сопротивление древесины лжетсуги при повышении температуры с 22—23° до 44—45° С (примерно вдвое) падает в 2,5 раза, а древесины бука при повышении температуры с 20—21° до 50° С — в 3 раза. При отрицательных температурах объемное сопротивление древесины возрастает. Удельное объемное сопротивление вдоль волокон образцов березы влажностью 76% при температуре 0°С составило 1,2 х 107 ом см, а при охлаждении до температуры —24° С оно оказалось равным 1,02 х 108 ом см. Пропитка древесины минеральными антисептиками (например, хлористым цинком) уменьшает удельное сопротивление, в то время как пропитка креозотом мало отражается на электропроводности. Электропроводность древесины имеет практическое значение тогда, когда она применяется для столбов связи, мачт линий высоковольтных передач, рукояток электроинструментов и т. д. Кроме того, на зависимости электропроводности от влажности древесины основано устройство электрических влагомеров.
www.drevesinas.ru
«Электрическое поле. Проводники и диэлектрики»
Электрическое взаимодействие отличается от взаимодействия тел, изучаемого механикой, прежде всего тем, что заряженные тела взаимодействуют, находясь на некотором расстоянии друг от друга. Это взаимодействие наблюдается как в вещественной среде, так и в безвоздушном пространстве. Согласно утверждению английских учёных М. Фарадея и Д. Максвелла, в пространстве, в котором находится заряженное тело, существует электрическое поле. Посредством этого поля одно заряженное тело действует на другое.
Электрическое поле материально, наряду с веществом оно представляет собой вид материи. Это означает, что электрическое поле реально, оно существует независимо от нас. Убедиться в реальности электрического поля заряженного тела можно, наблюдая его действие на другие тела.
Электрическая сила
Силу, с которой поле действует на внесённый в него электрический заряд, называют электрической силой. Предположим, что в электрическое поле, существующее вокруг некоторого заряженного тела, вносят электрический заряд. Значение силы, с которой это поле действует на заряд, зависит от расстояния между зарядами и от значения этих зарядов.
Одним из способов электризации тел является электризация через влияние. Предположим, что к шару электрометра поднесли, не касаясь его, отрицательно заряженную палочку. Электрическое поле этой палочки будет действовать на заряды, содержащиеся в электрометре. При этом свободные электроны будут отталкиваться и соберутся на конце стержня и на стрелке, отклонение стрелки покажет наличие заряда. На шаре электрометра при этом будет избыточный положительный заряд. Если палочку убрать, то стрелка электрометра вернётся в ноль.
Для того чтобы на электрометре остался заряд, его нужно заземлить, т.е. соединить с Землёй. Это можно сделать, если коснуться шара электрометра рукой. Тогда электроны, стремясь уйти как можно дальше, переместятся с электрометра в землю. Если теперь убрать руку и палочку, то стрелка покажет, что электрометр заряжен. На нём останется избыточный положительный заряд. Аналогично электрометр может приобрести отрицательный заряд, если поднести к нему положительно заряженную палочку. В этом случае при заземлении на электрометре будет избыток электронов.
Проводники и диэлектрики
В рассмотренном выше опыте электрические заряды перемещались по электрометру. По эбонитовой палочке они не перемещались, в противном случае при касании её рукой она бы разряжалась. Из этого следует, что существуют вещества, по которым заряды могут перемещаться, и вещества, по которым заряды не могут перемещаться.
Первый класс веществ называют проводниками. Хорошими проводниками являются металлы. Это связано с тем, что в металлах существуют электроны, слабо связанные с ядром атома и имеющие возможность свободно перемещаться. Если поместить проводник в электрическое поле так, как это было в рассмотренном опыте с электрометром, то произойдёт разделение зарядов. Электрическое поле в проводниках создаётся и поддерживается источником тока.
Второй класс веществ называют диэлектриками. К ним относятся эбонит, стекло, пластмассы и пр. В диэлектрике нет свободных зарядов. Если внести диэлектрик в электрическое поле, то нейтральный атом в нём примет определённую ориентацию, однако никакого перемещения зарядов не произойдет.
Схема «Проводники и диэлектрики»
Конспект урока «Электрическое поле. Проводники и диэлектрики».
Следующая тема: «Постоянный электрический ток».
Поговорим о поляризации
Следующий важный термин, о котором пришло время узнать — это поляризация диэлектриков. Дело в том, что процессы смещения зарядов диэлектрика протекают с разной скоростью. Как мы уже сказали ранее, для связанных зарядов время смещения гораздо меньше, а вот другие процессы протекают очень медленно.
При смещении зарядов диэлектрика образуется еще одно поле. Оно как раз и делает главное (внешнее) поле слабее. Как раз явление образования нового поля и называется поляризацией диэлектрика. Теперь давайте углубимся в этот процесс, ведь тут очень много интересных подробностей.
Для начала давайте поймем, почему новое поле появляется именно при смещении. Тут как раз все просто, ведь теперь из беспорядочного состояния диэлектрик становится более упорядоченным — отрицательные заряды теперь расположены левее своих положительных зарядов. Как раз это и создает новое поле.
Проницаемость диэлектрика
А как же измерить, насколько внутреннее поле ослабевает внешнее? Что-ж, здесь все очень просто. Такая мера называется электрическая проницаемость или проницаемость диэлектрика (наверняка вы уже слышали такой термин). Обычно говорят, что проницаемость диэлектрика это постоянная, но на самом деле в связи с тем, что поляризация протекает довольно долго, будем говорить, что эта величина зависит от времени действия внешнего поля.
Как на проницаемость диэлектрика влияет температура?
Но только ли время влияет на электрическую проницаемость. Выясняется, что не только. Оказывается, если увеличить температура, то вместе с этим еще и увеличивается интенсивность теплового движения, а это, как вы понимаете, напрямую влияет на проницаемость диэлектрика. Почему? Все просто: переход в устойчивое состояние становится более сложным, а поэтому диэлектрическая проницаемость с увеличением температуры становится все меньше.
Классификация материалов для диэлектрического питания
В соответствии с этими факторами любая отдельная диэлектрическая жидкость может обладать различными изоляционными свойствами, которые определяют область применения ее. Отметим, что на сегодняшний день не существует одного подхода по оценке материалов с диэлектрическими материалами. В этой статье собрана информация о действующем диэлектрическом материале, проанализированы его плюсы и минусы.
Разработаны структурные схемы для того, чтобы представить классификацию диэлектрического материала. На основе схемы было построено разделение всех видов диэлектрического материала в зависимости от особенностей их изготовления и методов производства.
Если остановиться на наборе материалов для диодов, которые следуют из рисунков, то мы увидим следующее. В промышленности широко используются диэлектрические материалы с органическими или неорганическими элементами. Неорганический химический материал известен как соединение углерода и других элементов. В связи с тем, что углерод имеет повышенную способность образовать химические соединения, его задача состоит в образовании соединений цепных или разветвленных молекул, которые можно образовать только из углеродных атомов или из углеродных атомов с углеродными атомами между ними, а также из углеродных атомов с углеродными атомами.
При развитии электротехнической отрасли параллельно развивалось производство минерального диэлектрического материала. Технология производства минеральных диодов и различных их видов улучшилось так, что эти диоды, благодаря дешевизне и высоким диэлектрическим параметрам, стали превращаться в природные, химические диоды.
В состав минеральных диэлектрических материалов входят:
- Стекло конденсационного стекла, санитарного стекла, лампового стекла, щелочного стекла, не щелочного стекла и других является аморфным веществом, являясь сложной комбинацией различных окислов. Благодаря содержанию в стекле оксидов, таких как SiO2-, CaO-, Al2-O3- и др. диэлектрические качества стекла существенно улучшаются.
- Стекло эмалевое – это материал тонкого слоя, который наносят на металлическую поверхность и другие предметы, чтобы защитить их от ржавчины.
- Материалы для уплотнения – кристаллы с силикатами; — Материалы для уплотнения фарфора, мыльного камня.
- Миканиты.
- Асбестоцементный асбест — название этой группы минералов волокнистого происхождения, являющихся волокнистыми разновидностями минерального хризолита, 3МгО 2СИО2 2Х2О.
Из вышеприведенного краткого обзора диэлектрических изделий становится понятно разнообразие материалов для диэлектрических изделий. Несмотря на такой большой ассортимент доступных материалов, не всегда они могут замениться друг с другом. В большинстве случаев область применения диодов зависит в основном от их невысокой стоимости, простоты применения, физических и иных вторичных свойства.
Кроме электроизоляционных свойств, важную роль играют и механические, и тепловые, и прочие физиологические свойства, в том числе способность материала подвергаться определённой обработке, чтобы получить необходимые продукты, а еще цена, и недостаток материала. Поэтому выбирают различные материалы для различных применений.
Разрешенная зона
У проводников разрешенная зона является частично заполненной, что позволяет электронам легко перемещаться в зону проводимости и вызывает хорошую электрическую проводимость.
В диэлектриках разрешенная зона полностью заполнена валентными электронами, что делает их плохими проводниками электричества. Энергия, необходимая для перемещения электронов в зону проводимости, слишком велика, поэтому диэлектрики обладают низкой проводимостью.
Полупроводники находятся между проводниками и диэлектриками. Их разрешенная зона частично заполнена, что делает их переходными материалами с умеренной электрической проводимостью.
Диэлектрик
DIELECTRIC, -а, м. Phys. Вещество, которое плохо проводит электричество.
Источник (печатная версия): Словарь русского языка: в 4-х томах / РАН, Институт лингвистических исследований; под ред. А. П. Евгеньевой. – 4-е изд. – М.: Рус. яз; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека
Диэлектрик (изолятор) (от греческого dia – через и electric – электрический) – это вещество (материал), которое относительно плохо проводит электричество. Электрические свойства диэлектриков определяются их способностью поляризоваться во внешнем электрическом поле. Термин был введен английским физиком М. Фарадеем.
Концентрация свободных носителей заряда в диэлектрике не превышает 108 см-3. С точки зрения электродинамики, диэлектрик – это среда с малым коэффициентом дисперсии (
); в этой среде ток проводимости намного меньше тока смещения. Идеальный диэлектрик – это среда со значением
DIELECTRIC, а, м. (физ.). Диэлектрическое тело, вещество, например, стекло.
диэлектрик
1. физический материал с низкой электропроводностью; изолятор ◆ Эффект существовал, но не мог быть использован на практике: для диэлектрик в диэлектрик чтобы правильно вращаться, необходимо приложить огромное напряжение до 100 кВ и более, при котором диэлектрик диэлектрик начинает проявлять некоторые свойства проводника. Борис Руденко, “Водный монолит и каменная река”, 2009 // “Nauka i Życie” (цит. по NKRNY) ◆ Возможно, удастся получить полимеры с проводящими свойствами, и, возможно, когда-нибудь проводящие провода и кабели будут выглядеть следующим образом: полимер внутри полимера, причем первый будет типичным проводником, а второй – нашим старым, знакомым. диэлектрик. B. Кренцель, В. Павлов, “Полимеры от А до Я”, 1965 // Химия и жизнь (цитируется по НКРН)
Создаем лучшую карту слов вместе
/>Добро пожаловать, меня зовут Lampbot, и я компьютерная программа, которая поможет вам создать карту слов. Я отлично разбираюсь в математике, но пока не очень хорошо понимаю, как устроен ваш мир. Пожалуйста, помогите мне разобраться!
Я стал немного лучше понимать мир эмоций.
Вопрос: – Это что-то нейтральное, позитивное или негативное?
Если такой кристалл растянуть или сжать, то электрические моменты положительных диполей сравняются по величине с электрическими моментами отрицательных диполей. Другими словами, не происходит изменения полярности диэлектрика и отсутствует пьезоэлектрический эффект.
Свойства диэлектриков
Поляризация: диэлектрики обладают возможностью поляризоваться под влиянием электрического поля. При этом атомы или молекулы диэлектрика смещаются под действием электрического поля и формируют так называемую электрическую поляризацию, что создает дополнительные электрические силы. Поляризация обуславливает возможность использования диэлектриков в качестве диэлектрических материалов в конденсаторах и других электрических устройствах.
Диэлектрическая проницаемость: диэлектриков характеризует их способность возбуждать электрическое поле в сравнении с проводниками. Диэлектрическая проницаемость ди электриков может быть различной, и она зависит от типа и структуры материала. Диэлектрики с высокой диэлектрической проницаемостью широко используются в качестве диэлектрических материалов в электронике и электротехнике.
Изотропность и анизотропность: диэлектрики могут быть как изотропными, так и анизотропными. В изотропных диэлектриках физические свойства не зависят от направления приложенного поля, в то время как в анизотропных диэлектриках свойства могут изменяться в зависимости от направления поля.
Теплостойкость: диэлектрики обладают различной теплостойкостью, что позволяет использовать их в разных температурных условиях. Некоторые диэлектрики могут сохранять прочность и изоляционные свойства даже при высоких температурах.
Виды диэлектриков
У многих школьников или студентом возникает сильная путаница с классификацией диэлектриков. Они просто не понимают, какие есть группы и на что они делятся. Сейчас я попытаюсь вам понятно все объяснить, чтобы, прочитав один раз, вы поняли навсегда.
Классификация по агрегатному состоянию
По агрегатному состоянию выделяется три основных вида диэлектриков:
- твердые – это стекло, пластик, керамика и подобные вещества. Они используются в специализированных станциях и заводах, позволяют ограничить распространение тока и сделать среду более безопасной для окружающих;
- жидкие – это масла, спреи, дистиллированная вода, которые снабжаются в различных машинах и технологиях. Например, это трансформаторы, которые просто не могут работать без изоляторов;
- газовые – к этому типу относятся исключительно азот, который чаще всего используют для того, чтобы понизить их температуру. Это позволяет обезопасить технику от сильного перегрева и возможного взрыва.
Классификация по происхождению
По происхождения изоляторы бывают органическими и неорганическими:
- органические – это диэлектрики, которые добываются в окружающей среде и были созданные не под влиянием человека. Они используются крайне редко, из-за их малого количества свойств;
- неорганические – эти изоляторы создаются самими людьми и чаще всего используются в производстве и деятельности. Они отлично останавливают ток и блокируют его распространение.
Кристаллическая решетка поможет разобраться
Кристаллические решетки помогают понять электрические диэлектрики. Обновите терминологию в своем сознании, чтобы она не казалась двусмысленной. Кристаллическая решетка — это группа таких точек, которые образуются в материале (точнее, кристалле) под действием смещения (которое, по совпадению, может быть вызвано воздействием электрического поля, см. ниже). Помните. Теперь давайте. К делу.
Как мы помним, в человеке, изолированном сегодня, энергия электронов не может приобрести никакого значения. В этом состоянии энергия принимает четко выраженные значения W1, W2, W3 и т.д. Вот, посмотрите на график:.
Конечно, каждый из этих уровней немного смещается после того, как индивид попадает в твердую кристаллическую решетку. Таким образом, зоны, где сосредоточена вся энергия, будут общими для всей сети.
Таким образом, в кристаллической решетке энергия электрона находится в четко определенной полосе, и все значения вне этой полосы запрещены. Мы это выяснили. Давайте двигаться дальше. Согласно принципу Паули, каждая полоса может вмещать ограниченное количество электронов. Сначала электроны заполняют нижние уровни, а когда эти ряды заполняются, они заполняют верхние ряды.
А теперь основные идеи, которые нам нужно понять, чтобы понять, почему некоторые вещества вызывают электричество. Электроны постепенно заполняют столбец снизу, поэтому в столбце выше столбец заполнен только полностью или частично.
Теперь, частично находясь в полном порядке, электроны могут свободно двигаться в порядке и, следовательно, могут бежать. Бинго! Однако если электроны заполняют верхние уровни, материал называется диэлектриком, так как электрическое поле не вызывает смещения.
Очень похожая ситуация возникает с аморфными твердыми веществами (например, янтарем или полиэтиленом). По определению, эти материалы имеют очень случайное расположение индивидуумов, и зон, общих для всего кристалла, просто не может существовать. Это означает, что они являются электродиэлектриками.
Помимо электронов, существуют ионы, которые также могут влиять на конечное состояние. Их тепловое движение заключается в том, что они колеблются где-то вокруг своего положения равновесия. Однако интересно то, что некоторые из этих ионов все же могут высвободиться и преодолеть то, что им мешает.
Эти ионы можно назвать свободными ионами. Они перемещаются в места, где их потенциальная энергия очень низка. Если мы говорим об электрических диэлектриках (а мы все еще говорим о них), то такие места в плотных кристаллических решетках являются их узлами.
Поэтому, согласно теории Уолтера Шоттки, это может произойти только в том случае, если определенное количество узлов решетки уже занято ионами. В физике такие узлы часто называют «дырами». Тогда движение тепла ограничивается случайными ионными скачками от одного узла к другому.
Диэлектрики
В диэлектриках свободные носители заряда отсутствуют. Протекание электрического тока в таких веществах невозможно при стандартных внешних условиях. Наиболее популярными материалами, которые не проводят электрический ток является слюда, керамика, резина и каучуки.
Также к ним можно отнести воздух и определенные виды газов, но для них, определяющим будет являться степень загрязнения. При наличии достаточного количества свободных ионов, диэлектрические свойства они утрачивают. Таким образом нельзя слепо полагаться что какое-либо вещество является абсолютным диэлектриком и не проводит электричество. При определенных обстоятельства большая часть веществ, заведомо считающихся диэлектриками могут приобретать свойства полупроводников.
Так, например, оксид железа, который в обычных условиях препятствует протеканию электрического тока, при повышении давления и температуры переходит в состояние проводимости, при этом внутренняя его структура не нарушается.
Подводя итоги, отметим что качественное различие веществ, пропускающих или препятствующих протеканию электрического тока является их проводящее состояние. Для металлов оно является постоянным, а для диэлектриков и полупроводников возбужденной фазой. Количественное определение проводимости выражается через удельное электрическое сопротивление.
Как известно, электрическим током называется упорядоченное движение носителей электрического заряда. Такими носителями заряда могут выступать электроны — в металлах, в полупроводниках и в газах; ионы — в электролитах и в газах; а в полупроводниках носителями электрического заряда выступают еще и дырки — незаполненные валентные связи в атомах, равные по модулю заряду электрона, но имеющие положительный заряд.
Задаваясь вопросом о том, какие же вещества проводят электрический ток, нам придется порассуждать о том, благодаря чему в первую очередь возникает ток, а именно — о наличии в тех или иных веществах заряженных частиц. Ток смещения рассматривать здесь не будем, поскольку он не является током проводимости, и поэтому не относится напрямую к данному вопросу.
По праву главными проводниками электрического тока во всей современной электротехнике выступают металлы. Для металлов характерна слабая связь валентных электронов, то есть электронов внешних энергетических уровней атомов, с ядрами этих атомов.
И как раз благодаря слабости данных связей, при возникновении по какой-нибудь причине в проводнике разности потенциалов (вихревое электрическое поле или приложенное напряжение), электроны эти начинают лавинообразно перемещаться в ту или иную сторону, возникает движение электронов проводимости внутри кристаллической решетки, словно движение «электронного газа».
Характерные представители металлических проводников: медь, алюминий, вольфрам.
Далее по списку — полупроводники. Полупроводники, по способности проводить электрический ток, занимают промежуточное положение между проводниками вроде медных проводов и диэлектриками вроде оргстекла. Здесь один электрон связан сразу с двумя атомами — атомы находятся в ковалентных связях друг с другом — поэтому для того чтобы каждый отдельно рассматриваемый электрон начал двигаться создавая ток, ему сначала необходимо получить энергию для реализации возможности покинуть свой атом.
Аморфные диэлектрики. Какие они?
Чем особенны аморфные диэлектрики? Главное, что отличает их от других — это довольно рыхлая структура, а значит очень много пустот внутри и большое пространство, где ионы могут находится в состоянии равновесия. При этом, при переходе от одного равновесного состояния до другого энергия, расходуемая ионом будет всегда разной. В некоторых переходах ион не будет полностью высвобождаться от сдерживающих его сил, поэтому можно его условно охарактеризовать как наполовину связанный этими силами.
Такие переходы будут тратить очень небольшое количество энергии, и перемещаться ион при таких переходах сможет лишь на очень небольшое расстояние. В результате теплового перемещения такие переходы внутри аморфных тел будут встречаться гораздо чаще, ведь они требуют гораздо меньше энергии, чем другие.
Однако, небольшое количество ионов, которые содержат в себе большие запасы энергии, смогут таки преодолевать связывающие их силы и будут перемещаться на сравнительно большие расстояния.
Практическое применение проводников
Проводники играют важную роль во многих аспектах нашей жизни и используются во множестве различных областей. Вот лишь несколько примеров практического применения проводников:
Электротехническая промышленность: Одним из основных применений проводников является передача электрического тока в различных устройствах и системах. Проводниками из меди или алюминия обеспечивается эффективная передача энергии, что позволяет работать светильникам, электроприборам, сетям электропередачи и многим другим устройствам.
Телекоммуникационная индустрия: Проводники используются в сетях связи для передачи сигналов данных. Они помогают обеспечить стабильную связь между телефонами, компьютерами и другими устройствами, позволяют передавать голосовую информацию, интернет-сигналы и другие данные.
Транспортная отрасль: В автомобилях, поездах, самолетах и других транспортных средствах проводники играют важную роль в передаче энергии и сигналов. Они обеспечивают работу систем зажигания, подачи электричества в освещение и обогрев, а также обеспечивают связь между устройствами и сигнализацией.
Электроника и современные технологии: В производстве электроники проводники используются для создания микросхем, печатных плат и других компонентов. Они обеспечивают передачу электрических сигналов внутри устройств, позволяют объединять и соединять различные элементы, такие как транзисторы, диоды, конденсаторы и другие. Без проводников современная электроника не могла бы функционировать.
Это лишь некоторые области, в которых применяются проводники. За счет своих уникальных свойств проводники позволяют нам использовать электроэнергию и передавать сигналы, что дает нам возможность разрабатывать и использовать все новые технологии и устройства.