Как проверить конденсатор на работоспособность мультиметром?

Виды мультиметров

Проверку удобно проводить с помощью мультиметра. Большинство таких приборов обеспечивает измерение трёх основных электрических величин: напряжения, силы тока и сопротивления. Обычно доступны и другие режимы работы, но они различаются в зависимости от используемой модели. С помощью некоторых из них, например, можно выполнить непосредственное измерение емкости конденсатора. Существуют следующие типы мультиметров:

Аналоговые ещё недавно были очень распространены. Они отличаются наличием стрелки и шкалы измерения. Их достоинством является доступность и простота использования. Наличие небольшого входного сопротивления может приводить в некоторых случаях к значительной погрешности измерений. Некоторым людям неудобно пользоваться нелинейной шкалой.

Аналоговый прибор

Цифровые устройства обладают более высокой точностью. Погрешность их измерений в большинстве случаев не превосходит 1%. Работа такого измерительного прибора строится на использовании электронных микросхем. Информация о результате измерений отображается на цифровом дисплее.

Цифровой мультиметр

Распространены такие разновидности мультиметров:

  • Портативные. Активно применяются не только специалистами, но и в быту. В них используются специальные щупы, которые подсоединяют к контактам измеряемых деталей.
  • У некоторых приборов имеются встроенные токоизмерительные клещи. Они позволяют определять силу тока без необходимости выпаивания деталей. Для применения их сначала разводят в стороны, а затем охватывают нужный провод. Открывают и закрывают клещи при помощи специальной клавиши. Некоторые мультиметры позволяют работать и с токоизмерительными клещами, и с обычными щупами по выбору мастера.

Мультиметр с токоизмерительными клещами

Стационарные мультиметры отличаются высокой надёжностью и точностью работы. Питаются они не от батарейки, а от электросети. Их часто используют для профессиональной работы с электронными устройствами.

Стационарный мультиметр

Существуют модели измерительных приборов, которые дополнительно обладают функциями осциллографов. Они имеют более высокую цену, но позволяют получать информацию о форме сигналов. Такие устройства обычно используются только в профессиональных целях.

Мультиметр с возможностями осциллографа

Устройство и принцип работы мультиметра

Лет 25 назад этот прибор был довольно солидных размеров и назывался тестер. С его помощью проводили тестирование (испытания, проверку) электрической цепи на предмет поиска обрыва или ненужного замыкания. Состоял он из гальванометра и набора катушек-сопротивлений с переключателем. Последний позволял выбрать режим измерений – силу тока, величину напряжения или сопротивление цепи.

Современный мультиметр в соответствии со своим названием способен на многочисленные измерения и проверки. Кроме вышеназванных, с его помощью можно проверить работоспособность диодов и транзисторов, а также конденсаторов. Вместо стрелочного гальванометра у него цифровой дисплей, а габаритные размеры и вес стали значительно меньше, чем у старого тестера. Во всех мультиметрах устанавливается 9-вольтовый источник питания типа «Крона».

Как проверять емкость конденсатора мультиметром

Некоторые модели мультиметров имеют встроенную функцию для измерения емкости. Проверяемый объект может подключаться как при помощи стандартных щупов, так и втыкаться в специально предназначенные для этого гнезда на корпусе прибора. Мультиметрами тоже можно пользоваться, чтобы определять исправность конденсаторов.

Цифровой мультиметр с функцией измерения емкости конденсаторов

Но, в отличие от узкоспециализированных приборов, пределы их ограничены: на верхнем емкость измеряется до десятков микрофарад, нижний – сотнями пикофарад. Но иногда и этого бывает достаточно для проверки и ремонта большинства распространенных радиоэлектронных устройств.

Проверка вольтметром

Если под рукой не оказалось тестера, проверить работоспособность элемента можно с помощью другого электроизмерительного прибора – вольтметра.

Рекомендуется, но не обязательно, отсоединять деталь от электрической цепи – можно проверить все и на плате, отсоединив только один контакт.
Теперь нужно зарядить конденсатор под напряжением ниже номинала. К примеру, для 25V-ного конденсатора подойдет 9V, а для 600V-ного – 400V. Подсоедините прибор и дайте несколько секунд для зарядки. Во избежание порчи во время зарядки следует проверить полярность выводов и клемм. Время зарядки зависит от разности номинала и питающего напряжения. Так, высоковольтный конденсатор можно зарядить только с помощью мощного прибора, превышающего эту величину.
Через некоторое время конденсатор необходимо подключить к вольтметру и замерить напряжение. Для определения исправности надо зафиксировать начальный показатель – если он приблизительно равен или чуть ниже номинала, то элемент исправен. Значительно меньшее напряжение говорит о том, что конденсатор быстро теряет заряд и уже не может выполнять свою задачу (в среднем обычный конденсатор должен удерживать номинальный заряд на протяжении не менее получаса)

После подключения через вольтметр радиоэлемент начнет разряжаться, поэтому важно записать напряжение, показанное сразу после подключения.

Принцип действия

Конденсаторы представляют собой устройство, состоящие из двух пластин со свойством электрической проводимости.

Пластины не контактируют друг с другом. Между ними есть пространство, которое может быть заполнено кислородом или любым диэлектрическим веществом.

Основной величиной является емкость, ее измеряют в фарадах. Значение вычисляется при способности конденсатора к накоплению количества энергии равному 1 кулону, при показателе разниц напряжения 1 вольт между 2 пластинами. Величина 1 кулон очень большая. Емкости современных устройств варьируются от миллифарад до пикофарад.

Емкость этих элементов понижается или повышается за счет величины пластин и диэлектрического расстояния между ними. При увеличении высоты и ширины пластин, снижают ширину диэлектрика, что способствует увеличению емкости.

Конденсатор работает по следующему принципу:

  1. Переменное напряжение заряжает токопроводящие пластины устройства.
  2. На этих пластинах происходит смена потенциалов.
  3. При снижении напряжения в цепи, конденсатор отдает часть недостающей энергии, стимулируя выравнивание напряжения.

При работе под нагрузкой постоянного напряжения, на пластинах не происходит смены потенциала. Ток выдается импульсными разрядами, согласно установленной полярности. Далее будет дано подробное описание разновидностей конденсаторов и сфер их использования.

Что такое конденсатор и зачем нужен?

Промышленность производит конденсаторы самых разных типов, применяемых во многих отраслях. Они необходимы в автомобиле- и машиностроении, радиотехнике и электронике, в приборостроении и производстве бытовой техники.

Конденсаторы — своего рода «хранилища» энергии, которую они отдают при возникновении кратковременных сбоев в питании. Кроме того, определенный вид этих элементов отфильтровывает полезные сигналы, назначает частоту устройств, генерирующих сигналы. Цикл разрядки-зарядки у конденсатора очень быстрый.


Такой электрический компонент, как конденсатор, состоит из пары проводников (токопроводящих обкладок). Между собой они разделены диэлектриком. В цепь, которая пропускает ток постоянного характера, включать его нельзя, поскольку это равнозначно разрыву

В цепи с переменным током обкладки конденсатора поочередно перезаряжаются с частотой протекающего тока. Объясняется это тем, что на зажимах источника такого тока периодически происходит смена напряжения. Результатом таких преобразований является переменный ток в цепи.

Так же как резистор и катушка, конденсатор проявляет сопротивление току переменного характера, но для токов разных частот оно разное. К примеру, хорошо пропуская высокочастотные токи, он одновременно может являться чуть ли не изолятором для низкочастотных токов.

Сопротивление конденсатора связано с его емкостью и частотой тока. Чем больше два последних параметра, тем его емкостное сопротивление ниже.

Определение емкости неизвестного конденсатора

Способ №1: измерение емкости специальными приборами

Самый просто способ – измерить емкость с помощью прибора, имеющего функцию измерения емкостей. Это и так понятно, и об этом уже говорилсь в и тут нечего больше добавить.Если с приборами совсем туган, можно попробовать собрать простенький самодельный тестер. В интернете можно найти неплохие схемы (посложнее, попроще, совсем простая).

Ну или раскошелиться, наконец, на универсальный тестер, который измеряет емкость до 100000 мкФ, ESR, сопротивление, индуктивность, позволяет проверять диоды и измерять параметры транзисторов. Сколько раз он меня выручал!

Способ №2: измерение емкости двух последовательно включенных конденсаторов

Иногда бывает так, что имеется мультиметр с измерялкой емкости, но его предела не хватает. Обычно верхний порог мультиметров – это 20 или 200 мкФ, а нам нужно измерить емкость, например, в 1200 мкФ. Как тогда быть?

На помощь приходит формула емкости двух последовательно соединенных конденсаторов:Суть в том, что результирующая емкость Cрез двух последовательных кондеров будет всегда меньше емкости самого маленького из этих конденсаторов. Другими словами, если взять конденсатор на 20 мкФ, то какой бы большой емкостью не обладал бы второй конденсатор, результирующая емкость все равно будет меньше, чем 20 мкФ.

Таким образом, если предел измерения нашего мультиметра 20 мкФ, то неизвестный конденсатор нужно последовательно с конденсатором не более 20 мкФ.Остается только измерить общую емкость цепочки из двух последовательно включенных конденсаторов. Емкость неизвестного конденсатора рассчитывается по формуле:Давайте для примера рассчитаем емкость большого конденсатора Сх с фотографии выше. Для проведения измерения последовательно с этим конденсатором включен конденсатор С1 на 10.06 мкФ (он был предварительно измерен). Видно, что результирующая емкость составила Cрез = 9.97 мкФ.

Подставляем эти цифры в формулу и получаем:

Способ №3: измерение емкости через постоянную времени цепи

Как известно, постоянная времени RC-цепи зависит от величины сопротивления R и значения емкости Cх:Постоянная времени – это время, за которое напряжение на конденсаторе уменьшится в е раз (где е – это основание натурального логарифма, приблизительно равное 2,718).

Таким образом, если засечь за какое время разрядится конденсатор через известное сопротивление, рассчитать его емкость не составит труда.Для повышения точности измерения необходимо взять резистор с минимальным отклонением сопротивления. Думаю, 0.005% будет нормально =)Хотя можно взять обычный резистор с 5-10%-ой погрешностью и тупо измерить его реальное сопротивление мультиметром. Резистор желательно выбирать такой, чтобы время разряда конденсатора было более-менее вменяемым (секунд 10-30).

Вот какой-то чел очень хорошо все рассказал на видео:

Другие способы измерения емкости

Также можно очень приблизительно оценить емкость конденсатора через скорость роста его сопротивления постоянному току в режиме прозвонки. Об этом уже упоминалось, когда шла речь про .

Яркость свечения лампочки (см. ) также дает весьма приблизительную оценку емкости, но тем не менее такое способ имеет право на существование.

Существует также метод измерения емкости посредством измерения ее сопротивления переменному току. Примером реализации данного метода служит простейшая мостовая схема:Вращением ротора переменного конденсатора С2 добиваются баланса моста (балансировка определяется по минимальным показаниям вольтметра). Шкала заранее проградуирована в значениях емкости измеряемого конденсатора. Переключатель SA1 служит для переключения диапазона измерения. Замкнутое положение соответствует шкале 40…85 пФ. Конденсаторы С3 и С4 можно заменить одинаковыми резисторами.

Недостаток схемы – необходим генератор переменного напряжения, плюс требуется предварительная калиброка.

Как проверить электролитический конденсатор мультиметром

Все накопители заряда устроены примерно одинаково, только с применением разных материалов. Например, электролитические конденсаторы имеют две пластины из алюминиевой фольги (электроды), а между ними диэлектрик, материал с большим сопротивлением.

Электролитические неполярные конденсаторы

В качестве диэлектрика в электролитических конденсаторах используется бумага пропитанная электролитом, а для неполярных пленочных конденсаторов диэлектриком является керамика, стекло. Сопротивление бумаги ниже, чем керамики, поэтому электролитические конденсаторы имеют больший ток утечки (саморазряд) по сравнению с пленочными накопителями заряда.

Неисправность конденсаторов

В случае замыкания пластин выделяется тепло, испаряется электролит и происходит взрыв, который выворачивает все внутренности накопителя заряда. Чтобы электролитические конденсаторы не взрывались, на торце его корпуса выдавливается крест. При закипании электролита разрывается торец корпуса по линии креста и пары электролита выходят наружу, не разрывая корпус.

Поэтому на некоторых неисправных конденсаторах образуется вспучивание на торцах корпуса. По типу конденсаторы разделяется на полярные и неполярные. Полярные электролитические конденсаторы работают только при правильном подключении плюса и минуса к маркированным выводам конденсатора. В противном случае накопитель заряда выходит из строя.

Существуют также и электролитические неполярные конденсаторы, которые предназначены для работы в сетях переменного напряжения. Накопители пленочного типа относятся к неполярным емкостям. Соблюдение полярности в схемах для них не обязательно. Состояние конденсатора проверяется мультиметром на сопротивление или в режиме измерения емкости некоторыми мультиметрами (если имеется такой режим).

Проверка конденсаторов цифровым мультометром

Сопротивление диэлектрика электролитического конденсатора меняется от 100 Ком до 1 Мом. Перед проверкой электрического конденсатора нужно его разрядить. Если конденсатор небольшой емкости, то разрядить его можно, замкнув металлической отверткой вывода. Когда емкость большая и его номинальное напряжение высокое, разряжают накопитель через резистор 10 Ком, держа сопротивление инструментом с изолированными ручками.

Разряжать конденсаторы нужно в целях безопасности (особенно высоковольтные) и сохранения работоспособности мультиметра. Оставшееся напряжение на накопителе легко может вывести из строя измерительный прибор. При проверке электролитического полярного конденсатора мультиметром щупы прикладывают к его выводам в соответствии с полярностью, плюс прибора к плюсу накопителя.

Величину измеряемого сопротивления на приборе ставят от 100 Ком до 1 Мом, в зависимости от величины емкости. Для измерения большой емкости предел измерения сопротивления ставят 1 Мом. В начале измерения мультиметр покажет небольшое сопротивление, которое достигнет наибольшего значения при полной зарядке конденсатора. Если дисплей покажет ноль, значит неисправность ёмкости в коротком замыкании, а единица указывает на обрыв выводов.

Работоспособность ёмкости можно проверить, если зарядить ее от источника питания и замерить величину напряжения накопителя мультиметром. Если его рабочее напряжение 25 В, заряжают емкость от источника напряжением 9 — 12 В, в соответствии с полярностью. Показания на дисплее снимаются в момент прикосновения щупов к выводам ёмкости, потому что емкость начинает разряжаться через мультиметр, и напряжение будет падать.

Пошаговая инструкция проверки конденсатора мультиметром

Наиболее распространенная проблема, связанная с конденсатором — пробой, который приводит к снижению сопротивления в диэлектрике.

Неисправность можно определить с помощью внешнего осмотра на факт вздутия, потемнения или появления черных пятен, а также более глубокой проверки с помощью прибора.

Изучение конденсатора на факт исправности возможно после выпаивания или прямо на плате. Ниже приведем разные варианты выполнения этой работы.

Внешний осмотр

Во многих ситуациях достаточно одного взгляда, чтобы определить неисправность детали. В этом случае можно ускорить проверку и избежать применения мультиметра.

Конденсатор нужно поменять в следующих случаях:

  • вздутие;
  • течь жидкости изнутри;
  • вмятины или механические повреждения;
  • сколы или трещины (характерно для керамических изделий).

При выявления любого из указанных выше повреждений использовать деталь запрещено, и ее нужно поменять.

Проверка мультиметра полярного конденсатора

Проверке подлежат конденсаторы емкостью больше 0,25 мкФ.

Сопротивление таких емкостей небольшое, поэтому при выборе диапазона важно быть внимательным.

Во многих мультиметрах предельный диапазон равен 100 кОм, а у более мощных он может достигать 1 мОм.

Алгоритм действий, следующий:

  1. Снимите оставшийся заряд путем выкорачивания. Как это сделать правильно, рассмотрено выше.
  2. Установите подходящий предел измерений и подключите устройство к конденсатору с учетом «плюса» и «минуса» (руками к щупам касаться запрещено).
  3. Смотрите на параметр, указанный на экране. Он должен составлять более 100 кОм.

Отметим, что весь период замера параметр сопротивления будет меняться в большую сторону. Эта особенность будет заметна на экране.

Это связано с тем, что конденсатор заряжается от мультиметра, а в конечном итоге достигает отметки «1».

Если цифра «1» появится сразу, то это будет указывать на обрыв внутренней цепи.

Если показания не изменились, а прибор начал издавать звук, значит произошло короткое замыкание.

Проверка мультиметром неполярного конденсатора

На контроль неполярного конденсатора необходимо еще меньше времени.

Сделайте следующие шаги:

  1. Снимите оставшийся заряд подручным инструментом, к примеру, отверткой.
  2. Установите на мультиметре предел измерения в мегаомах.
  3. Коснитесь щупами к выводам емкости.
  4. При наличии сопротивления меньше 2 Мом конденсатор можно выбросить.

Особенность неполярных устройств в том, что в них не требуется соблюдение полярности. Для сравнения можно взять два устройства, чтобы один гарантированно был целым.

Если нужно проверить деталь с емкость до 0,5 мкФ, с помощью измерительного прибора сделать это не выйдет. В таком случае мультиметр будет показывать КЗ.

Для проверки неполярного конденсатора напряжением более 400 В работа делается после зарядки от источника, который защищен от короткого замыкания.

Последовательно с конденсатором подключается резистор, который рассчитан на сопротивление больше 100 Ом. Применение такого элемента позволяет уменьшить первичный бросок тока.

Существует также метод проверки на искру. В таком случае устройство нужно зарядить до рабочей величины, а после закоротить выводы с помощью отвертки (ручка инструмента должна быть изолирована).

По интенсивности искрения можно приблизительно узнать о силе разряда (для конденсаторов с небольшой емкостью, смотрите меры безопасности).

Сразу после заряда можно изменить напряжение. Конденсатор исправен, если он длительное время сохраняет заряд.

Разрядка устройства происходит постепенно через резистор. По причине сильного искрения разрядить его, к примеру, отверткой не получится.

Использование аналоговых измерителей

Для проверки конденсатора не обязательно иметь новый и современный мультиметр. Можно использовать обычную Ц4313, если она осталась со времен СССР или YX-1000A.

Способ измерения такой же, но сами проверки более наглядны с визуальной точки зрения.

Здесь нужно смотреть не на цифры, а на движение стрелки прибора.

Для проверки сделайте следующее:

  1. Жмите на кнопку RX.
  2. Вставьте щупы в специальные разъемы.
  3. Берите конденсатор и разрядите его.
  4. Прикоснитесь щупами к конденсатору.
  5. Если деталь исправна, стрелка будет отклоняться, а потом плавно вернется в первоначальную позицию. Скорость движения зависит от емкости проверяемого конденсатора.

Если при проверке стрелка не отклоняется или зависла в конкретной позиции, это свидетельствует о неисправности детали.

Как проверить конденсатор мультиметром

Промышленность выпускает несколько видов проверочного оборудования для измерения электрических параметров. Цифровые более удобны для измерений и дают точные показания. Стрелочные предпочитают за визуальное движение стрелки.

Если кондер с виду абсолютно цел, проверить его без приборов невозможно. Осуществлять проверку лучше с выпаиванием из схемы. Так показатели считываются точнее. Простые детали редко выходят из строя. Зачастую механически повреждаются диэлектрики. Основная характеристика при проверке — пропуск только переменного тока. Постоянный проходит исключительно в самом начале в течение короткого промежутка времени. Сопротивление детали зависит от существующей емкости.

Предпосылка проверки полярного электролитического конденсатора мультиметром на работоспособность — емкость более 0,25 мкФ.  Пошаговая инструкция проверки:

  1. Разряжают элемент. Для этого металлическим предметом закорачиваются его ножки. Замыкание характеризуется появлением искры и звука.
  2. Переключатель мультиметра ставится на значение сопротивления.
  3. Прикасаются щупами к ножкам конденсатора с учетом полярности. Красным к плюсовой ножке, черным тыкаем в минусовую. Это необходимо только при работе с полярным устройством.

Конденсатор начинает заряжаться при подключении щупов. Сопротивление растет до максимума. Если при щупов мультиметр запищит при нулевом значении, значит произошло короткое замыкание. Если сразу на циферблате высвечивается значение 1, то в элементе внутренний обрыв. Такие кондеры считаются неисправными — замыкание и обрыв внутри элемента неустранимы.

Если значение 1 появилось спустя некоторое время, элемент считается исправным.

Проверить неполярный конденсатор еще проще. На мультиметре выставляем измерение на мегаомы. После касания щупами смотрим на показания. Если они окажутся менее 2Мом — деталь неисправна. Более — исправна. Полярность соблюдать ни к чему.

Электролитический

Как следует из названия, электролитические кондеры в алюминиевом корпусе наполнены электролитом между обкладками. Габариты самые разные — от миллиметров до десятков дециметров. Технические характеристики могут превышать таковые у неполярных на 3 порядка и достигать больших величин — единиц mF.

В электролитических моделях появляется дополнительный дефект, связанный с ЭПС (эквивалентным последовательным сопротивлением). Этот показатель еще обозначают аббревиатурой ESR. Такие конденсаторы в схемах с высокими частотами отфильтровывают несущий сигнал от паразитных. Но возможно подавление ЭМП, сильно снижая уровень и играя роль резистора. Это ведет к перегреву конструкции детали.

Из чего складывается ESR:

  • сопротивление обкладок, выводов, узлов соединения;
  • неоднородность диэлектриков, влага, паразитные примеси;
  • сопротивление электролита за счет изменения химических параметров при нагреве, хранении, высыхании.

В сложных схемах показатель ЭПС особенно важен, но измеряется только специальными приборами. Некоторые мастера самостоятельно их изготавливают и используют в связке с обычными мультиметрами.

Керамический

Сначала осматриваем устройство визуально. Особенно внимательно, если в схеме использованы детали, бывшие в употреблении. Но и новые керамические материалы могут быть бракованными. Сразу заметны кондеры с пробоем — потемневшие, вздутые, прогоревшие, с растресканным корпусом. Такие электродетали однозначно выбраковываются даже без инструментальной проверки — ясно, что они неработоспособны или не выдают назначенных параметров. Лучше озаботиться поиском причин пробоев. Даже новые экземпляры с трещиной в корпусе являются «миной замедленного действия».

Пленочный

Пленочные устройства применяются в цепях постоянного тока, фильтрах, стандартных резонансных схемах. Основные неисправности устройств с малой мощностью:

  • снижение рабочих показателей в результате иссыхания;
  • увеличение параметров тока утечки;
  • повышение активных потерь внутри цепи;
  • замыкание на обкладках;
  • потеря контакта;
  • обрыв проводника.

Измерить емкость конденсатора возможно в режиме тестирования. Стрелочные модели реагируют отклонением стрелки со скачком и возвратом к нулю. При небольшом отклонении стрелки диагностируют утечку тока при малой емкости.

Малая эффективность с низким уровнем мощности при большом токе утечки мешает широкому применению данных конденсаторов и не позволяет его потенциалу полностью раскрыться. Поэтому использование этого вида кондеров нецелесообразно.

Проверка мультиметром

При помощи мультиметра проверяют два параметра конденсатора: внутреннее сопротивление и емкость.

Внутреннее сопротивление (проверка на пробой и обрыв цепи)

Мультиметр переводят в режим измерения сопротивления путем установки переключателя в сектор «Ω» на верхнюю позицию — у разных моделей это 2 или 20 МОм.

Далее касаются щупами выводов конденсатора. Если тот исправен, происходит следующее:

  • вначале мультиметр показывает низкое сопротивление — конденсатор заряжается подаваемым на щупы напряжением;
  • по мере увеличения заряда в конденсаторе, сопротивление постепенно возрастает и в конце концов достигает очень высокой величины: на дисплее — значение свыше 2 МОм или «1» (символ бесконечности).

Иное поведение прибора свидетельствует о неисправности элемента, когда сопротивление:

  1. оказалось ниже 2 МОм: конденсатор пробит (появилась проводимость в диэлектрике между обкладками);
  2. сразу стало бесконечно большим: обрыв вывода.

Конденсаторы делятся на два типа: полярные и неполярные. Первые чувствительны к полярности измерений и если ее перепутать, подав на «минусовый» вывод положительный потенциал, а на «плюсовой» — отрицательный, выходят из строя. «Минусовый» вывод распознают по отметке в виде «птички» на корпусе конденсатора.

В мультиметре потенциалы распределяются так:

  • порт «COM» — отрицательный: по негласному правилу сюда включают черный щуп;
  • порт «V/ Ω» — положительный: принято включать красный щуп.

При измерении сопротивления неполярного конденсатора полярность можно поменять. Элемент перезаряжается и показания на мультиметре снова возрастают от малых величин до 2 МОм и более.

При наличии заведомо исправного конденсатора той же марки, состояние исследуемого проверяют методом сравнения:

  • замеряют сопротивление исправного конденсатора;
  • то же самое выполняют для исследуемого элемента;
  • сравнивают скорость изменения показаний на мультиметре.

Для этого метода более подходит аналоговый (стрелочный) тестер: плавно отклоняющаяся стрелка четко отражает изменение сопротивления в режиме реального времени.

Конденсатор проверяется в разряженном состоянии, иначе возможна электротравма или повреждение мультиметра.

Способ разряда зависит от емкости:

  • малая (низкое напряжение): закорачивают выводы отверткой;
  • большая (высокое напряжение): замыкают выводы резистором сопротивлением 10 кОм.

Резистор удерживают инструментом с изолированными ручками.

Емкость

Измерение емкости возможно при наличии в мультиметре специальной функции. У таких приборов на лицевой панели имеется сектор «CX».

Конденсатор подключается двумя способами:

  1. у некоторых моделей имеются разъемы для щупов с пометкой «CX»;
  2. у других в сектор «CX» выведены две контактные площадки с пометками «+» и «-».

При контакте щупов или площадок с выводами конденсатора на дисплее отображается значение емкости. Полученные данные сравнивают с числовым показателем, указанным на корпусе конденсатора, после чего делают вывод о его пригодности.

Мультиметр

Переключатель должен быть установлен в секторе «CX» на позиции с ближайшим большим значением по отношению к ожидаемой емкости. Обычно в секторе имеется 5 позиций со данными от 20 нФ до 200 мкФ.

Данный способ контроля не подходит для конденсаторов емкостью менее 0,25 мкФ. Их проверяют специальным устройством — LC-метром.

При отсутствии функции определения емкости, конденсатор проверяют так:

  1. Заряжают его от источника постоянного тока. Напряжение источника — примерно вдвое меньше напряжения конденсатора. Для элемента на 25 В достаточно источника на 9 – 12 В.
  2. Выждав несколько секунд, чего обычно достаточно для полной зарядки, радиодеталь отключают от питания и мультиметром замеряют напряжение на ее выводах.

Измеритель настраивается следующим образом:

  • черный щуп включен в порт «COM»;
  • красный — в порт «V/Ω»;
  • переключатель: в сектор измерения постоянного напряжения («DCV» или «V-») на позицию с ближайшим большим значением относительно ожидаемого напряжения конденсатора.

Важно успеть прочитать первые показания, поскольку напряжение постепенно будет снижаться — конденсатор разряжается через мультиметр.

Проверка мультиметром в зависимости от типа конденсатора (каждый тип сделать отдельными подзаголовками)

Одним из приборов, с помощью которого можно продиагностировать конденсатор и замерить его параметры, является обычный бытовой тестер. Сразу следует заметить, что способ проверки не зависит от назначения элемента (мультиметру все равно, какую роль выполняет проверяемая деталь – пусковой конденсатор, сглаживающий, разделительный и т.п.), а также от типа элемента — воздушный, вакуумный, пленочный и другие конденсаторы проверяются по одним и тем же методикам.

Проверка стрелочным мультиметром

Можно выполнить проверку конденсатора стрелочным мультиметром. Для этого он переводится в режим омметра на минимальный предел. При подключении проверяемого элемента к щупам прибора, его стрелка должна резко отклониться вправо (в сторону нуля), а потом плавно вернуться на деление «бесконечность». Чем выше емкость конденсатора, тем на больший угол отклонится стрелка.

Диагностика с помощью стрелочного мультиметра

Так ведет себя исправная деталь. Если компонент проблемный, то внешние признаки при проверке выглядят так:

  • при подключении щупов стрелка не отклоняется совсем – обрыв (или маленькая номинальная ёмкость);
  • стрелка отклоняется вправо на нулевое деление – короткое замыкание обкладок, нарушение целостности диэлектрика;
  • после отклонения вправо стрелка не возвращается на деление «бесконечность» — повышенный ток утечки.

Приобретя опыт, по углу первоначального отклонения стрелки можно приблизительно оценивать емкость конденсатора.

Примеры неисправностей, выявляемых стрелочным прибором

Проверка цифровым мультиметром

Стрелочные тестеры в настоящее время вытесняются из обихода недорогими и более удобными цифровыми. К сожалению, они обладают большей инерцией измерений, и прозвонить конденсатор описанными выше способами не получится, пожалуй, кроме случаев короткого замыкания и, в некоторых случаях, повышенного тока утечки. Зато у таких мультиметров есть режим измерения емкости. С его помощью можно определить ёмкость конденсатора, что позволяет достаточно достоверно судить о его исправности.

Селектор рода работы тестера в положении измерения емкости

Для выполнения диагностики надо переключить прибор в соответствующий режим (обычно он маркируется значком конденсатора или Cx). После подключения щупов к выводам надо выждать некоторое время (зависит от реальной емкости), и на дисплей выведется измеренное значение. Его надо сравнить со значением на корпусе элемента. Если обе цифры совпадают с учетом погрешности (чаще всего ±20%, у оксидных конденсаторов – больше), значит, можно считать деталь исправной.

Замеренная емкость составляет 39,58 мкФ при номинале 47 мкФ– деталь исправна

Тематическое видео:

Проверка «пинцетом»

Радиодетали в исполнении SMD щупами обычного мультиметра проверять не очень удобно. Можно сделать переходник к тестеру в виде пинцета, а можно приобрести отдельный прибор для тестирования компонентов для поверхностного монтажа. Использование такого устройства принципиально не отличается от использования любого другого измерительного прибора, вопрос только в удобстве – если предстоит тестировать много SMD-компонентов, есть смысл купить подобный тестер.

Тестер для диагностики SMD-деталей

Как проверить конденсатор мультиметром?

Современная промышленность выпускает большое разнообразие моделей приборов для измерения электрических параметров – мультиметров. Они бывают как с аналоговой стрелочной индикацией, так и с жидкокристаллическим дисплеем. Приборы с ЖК дисплеем дают более точные измерения и удобны в использовании. Стрелочные индикаторы предпочитают из-за более плавного перемещения стрелки.

Перед проверкой накопителей энергии, их необходимо выпаять из схемы, чтобы избежать влияния на показания других радиотехнических элементов.

Конденсаторы разделяют на полярные и неполярные. К полярным относятся все электролитические. Они включаются в электрическую схему строго с соблюдением полярности. К неполярным – все остальные. Неполярные впаиваются в схему без соблюдения полярности.

Измерение емкости конденсатора мультиметром

Измерение емкости конденсатора мультиметром — это довольно простая операция, если у вас есть мультиметр с функцией измерения емкости. Вот как это можно сделать:

Отключите конденсатор от схемы:

Прежде чем измерять емкость конденсатора, убедитесь, что он полностью отключен от схемы и разряжен. Это можно сделать, коснувшись обоих выводов конденсатора резистором с подходящим сопротивлением или просто проводником (но это может повредить конденсатор, если он был заряжен под высоким напряжением).

Настройте мультиметр:

Включите мультиметр и установите его в режим измерения емкости (обычно обозначается символом «C» или «CAP»).

Подключите щупы:

Подключите красный щуп к позитивному выводу конденсатора, а чёрный щуп к негативному. Если вы не знаете полярность конденсатора (в случае неполярного конденсатора), это не должно иметь значения.

Считайте показания:

Подождите несколько секунд, пока мультиметр измерит емкость. Показания должны отобразиться на экране мультиметра.

Анализ результатов:

Сравните полученное значение с номинальным значением, указанным на конденсаторе. Небольшое отклонение в пределах 5-10% обычно считается допустимым, но это может зависеть от конкретного приложения.

Безопасность:

Будьте осторожны при работе с конденсаторами, которые могут хранить заряд даже после отключения питания. Разряд заряженного конденсатора может быть опасным.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий