Физическое определение конденсатора
Конденсатор — электрический элемент, служащий для накопления заряда или энергии. Конструктивно радиоэлемент представляет собой две пластины, выполненные из токопроводящего материала, между которыми располагается слой диэлектрика. Токопроводящие пластины называются обкладками. Они не связаны между собой общим контактом, но при этом каждая имеет собственный вывод.
Конденсаторы имеют многослойный вид, в них слой диэлектрика чередуется со слоями обкладок. Они представляют собой цилиндр или параллелепипед с закруглёнными углами. Основной параметр электрического элемента — это ёмкость, единицей измерения которой является фарада (F, Ф). На схемах и в литературе радиодеталь обозначается латинской буквой C. После символа указывается порядковый номер на схеме и значение номинальной ёмкости.
Так как одна фарада — это довольно большая величина, то реальные значения ёмкости конденсатора значительно ниже. Поэтому при записи принято использовать условные сокращения:
- П — пикофарада (pF, пФ);
- Н — нанофарада (nF, нФ);
- М — микрофарада (mF, мкФ).
Принцип работы
Принцип действия радиодетали зависит от вида электрической сети. При подключении к выводам обкладок источника постоянного тока носители заряда попадают на токопроводящие пластины конденсатора, где происходит их накопление. Вместе с тем на выводах обкладок появляется разность потенциалов. Её значение увеличивается до тех пор, пока не достигнет величины, равной источнику тока. Как только это значение выровняется, на обкладках перестаёт накапливаться заряд, а электрическая цепь разрывается.
В сети с переменным током конденсатор представляет собой сопротивление. Его величина связана с частотой тока: чем она выше, тем ниже сопротивление и наоборот. При воздействии на радиоэлемент переменной силы тока происходит накопление заряда. Со временем ток заряда уменьшается и пропадает полностью. Во время этого процесса на обкладках устройства концентрируются заряды разных знаков.
Диэлектрик, проложенный между ними, препятствует их перемещению. В момент смены полуволны происходит разряд конденсатора через нагрузку, подключённую к его выводам. Возникает ток разряда, то есть в электрическую цепь начинает поступать накопленная радиоэлементом энергия.
Характеристики и виды
Измерения параметров конденсаторов связаны с нахождением величин их характеристик
Но среди них наиболее важной является ёмкость, которая обычно и измеряется. Эта величина обозначает количество заряда, которое может накопить радиоэлемент. В физике электроёмкостью называют величину, равную отношению заряда на любой обкладке к разности потенциалов между ними
В физике электроёмкостью называют величину, равную отношению заряда на любой обкладке к разности потенциалов между ними.
При этом ёмкость конденсатора зависит от площади обкладок элемента и толщины диэлектрика. Кроме ёмкости радиоприбор характеризуется также полярностью и величиной внутреннего сопротивления. Применяя специальные приборы, эти величины также можно измерить. Сопротивление устройства влияет на саморазряд элемента. Кроме этого, к основным характеристикам конденсатора относят:
- Сопротивление утечки. Это внутренний импеданс, через который происходит разряд конденсатора, неподключенного к внешней цепи.
- Эквивалентную индуктивность. Это паразитная характеристика, влияющая на работу элемента на высоких частотах.
- Эквивалентное последовательное сопротивление (ESR). Состоит из обобщённого сопротивления выводов и обкладок, представляется как резистор, подключённый последовательно с конденсатором.
Классифицируются конденсаторы по разным критериям, но в первую очередь их разделяют по типу диэлектрика. Он может быть газообразным, жидким и твёрдым. Чаще всего в качестве него используются стекло, слюда, керамика, бумага и синтетические плёнки. Кроме того, конденсаторы различаются по способности изменения величины ёмкости и могут быть:
- Постоянными. Относящиеся к этому виду конденсаторы обладают постоянным значением ёмкости.
- Переменными. К ним относятся радиоэлементы, величину ёмкости которых можно изменять в процессе работы устройства. Изменение происходит за счёт смены температурного режима, электрических параметров цепи и механических методов.
- Построечными. Позволяют изменять ёмкость при настройке аппаратуры, при этом элемент не должен быть подключён к источнику питания.
Как проверить конденсатор мультиметром
Промышленность выпускает несколько видов проверочного оборудования для измерения электрических параметров. Цифровые более удобны для измерений и дают точные показания. Стрелочные предпочитают за визуальное движение стрелки.
Если кондер с виду абсолютно цел, проверить его без приборов невозможно. Осуществлять проверку лучше с выпаиванием из схемы. Так показатели считываются точнее. Простые детали редко выходят из строя. Зачастую механически повреждаются диэлектрики. Основная характеристика при проверке — пропуск только переменного тока. Постоянный проходит исключительно в самом начале в течение короткого промежутка времени. Сопротивление детали зависит от существующей емкости.
Предпосылка проверки полярного электролитического конденсатора мультиметром на работоспособность — емкость более 0,25 мкФ. Пошаговая инструкция проверки:
- Разряжают элемент. Для этого металлическим предметом закорачиваются его ножки. Замыкание характеризуется появлением искры и звука.
- Переключатель мультиметра ставится на значение сопротивления.
- Прикасаются щупами к ножкам конденсатора с учетом полярности. Красным к плюсовой ножке, черным тыкаем в минусовую. Это необходимо только при работе с полярным устройством.
Конденсатор начинает заряжаться при подключении щупов. Сопротивление растет до максимума. Если при щупов мультиметр запищит при нулевом значении, значит произошло короткое замыкание. Если сразу на циферблате высвечивается значение 1, то в элементе внутренний обрыв. Такие кондеры считаются неисправными — замыкание и обрыв внутри элемента неустранимы.
Если значение 1 появилось спустя некоторое время, элемент считается исправным.
Проверить неполярный конденсатор еще проще. На мультиметре выставляем измерение на мегаомы. После касания щупами смотрим на показания. Если они окажутся менее 2Мом — деталь неисправна. Более — исправна. Полярность соблюдать ни к чему.
Электролитический
Как следует из названия, электролитические кондеры в алюминиевом корпусе наполнены электролитом между обкладками. Габариты самые разные — от миллиметров до десятков дециметров. Технические характеристики могут превышать таковые у неполярных на 3 порядка и достигать больших величин — единиц mF.
В электролитических моделях появляется дополнительный дефект, связанный с ЭПС (эквивалентным последовательным сопротивлением). Этот показатель еще обозначают аббревиатурой ESR. Такие конденсаторы в схемах с высокими частотами отфильтровывают несущий сигнал от паразитных. Но возможно подавление ЭМП, сильно снижая уровень и играя роль резистора. Это ведет к перегреву конструкции детали.
Из чего складывается ESR:
- сопротивление обкладок, выводов, узлов соединения;
- неоднородность диэлектриков, влага, паразитные примеси;
- сопротивление электролита за счет изменения химических параметров при нагреве, хранении, высыхании.
В сложных схемах показатель ЭПС особенно важен, но измеряется только специальными приборами. Некоторые мастера самостоятельно их изготавливают и используют в связке с обычными мультиметрами.
Керамический
Сначала осматриваем устройство визуально. Особенно внимательно, если в схеме использованы детали, бывшие в употреблении. Но и новые керамические материалы могут быть бракованными. Сразу заметны кондеры с пробоем — потемневшие, вздутые, прогоревшие, с растресканным корпусом. Такие электродетали однозначно выбраковываются даже без инструментальной проверки — ясно, что они неработоспособны или не выдают назначенных параметров. Лучше озаботиться поиском причин пробоев. Даже новые экземпляры с трещиной в корпусе являются «миной замедленного действия».
Пленочный
Пленочные устройства применяются в цепях постоянного тока, фильтрах, стандартных резонансных схемах. Основные неисправности устройств с малой мощностью:
- снижение рабочих показателей в результате иссыхания;
- увеличение параметров тока утечки;
- повышение активных потерь внутри цепи;
- замыкание на обкладках;
- потеря контакта;
- обрыв проводника.
Измерить емкость конденсатора возможно в режиме тестирования. Стрелочные модели реагируют отклонением стрелки со скачком и возвратом к нулю. При небольшом отклонении стрелки диагностируют утечку тока при малой емкости.
Малая эффективность с низким уровнем мощности при большом токе утечки мешает широкому применению данных конденсаторов и не позволяет его потенциалу полностью раскрыться. Поэтому использование этого вида кондеров нецелесообразно.
Присутствует разъем для измерения емкости
Дальнейшая методика проверки зависит от функциональности самого мультиметра: обладает ли он специальными разъемами и функцией измерения емкости (обозначается Cx) или нет. Если да, то все предельно просто:
- выпаяйте деталь из платы;
- зачистите ножки от окислов и остатков припоя;
- установите на приборе режим измерения емкости с пределом измерения, близким или равным к номиналу конденсатора, который на нем указан;
- установите элемент в специальное парное гнездо на мультиметре, либо коснитесь ножками металлических пластин, его заменяющих.
Электролитический конденсатор — это мини-аккумулятор, в нем содержится электролит, и подключается он только с соблюдением полярности.
Плюс на нем не отмечается, но минус промаркирован галочкой на золотистом фоне, кроме того, «минусовая» ножка иногда бывает длиннее. Неправильное подключение полярного элемента приведет к однозначному выходу его из строя.
После установки детали в гнезда мультиметр начнет заряжать его постоянным током. На дисплее появится число, которое будет постепенно увеличиваться.
Когда показания перестанут меняться — элемент максимально заряжен. Если показатель заряда аналогичен или хотя бы близок номиналу — элемент работоспособен.
А как проверить керамический конденсатор? Точно так же. Керамические элементы этого вида всегда неполярны, поэтому можно не опасаться неправильного подключения.
Особенности SMD конденсаторов
Современные технологии позволяют делать радиодетали очень малых размеров. С применением SMD технологии компоненты схем стали миниатюрными. Несмотря на малые размеры, проверка SMD конденсаторов ничем не отличается от более габаритных. Если надо узнать, рабочий он или нет, сделать это можно прямо на плате. Если необходимо измерить емкость, надо выпаять, затем провести измерения.
SMD технологии позволяют делать миниатюрные радиоэлементы
Проверка работоспособности SMD конденсатор проводится точно также как электролитических, керамических и всех других. Щупами надо прикасаться к металлическим выводам по бокам. Если они залиты лаком, лучше плату перевернуть и тестировать «с тыльной» стороны, определив, где находятся выводы.
Танталовые SMD конденсаторы могут быть полярными. Для обозначения полярности на корпусе, со стороны отрицательного вывода, нанесена полоса контрастного цвета
Даже обозначение полярного конденсатора похоже: на корпусе возле «минуса» нанесена контрастная полоса. Полярными SMD конденсаторами могут быть только танталовые, так что если видите на плате аккуратный прямоугольник с полосой вдоль короткого края, к полоске прикладывайте щуп мультиметра который подключен к минусовой клемме (черный щуп).
Применение формул
Что делать, если под рукой нет такого мультиметра с гнездами измерения, а есть только обычный бытовой прибор? В таком случае необходимо вспомнить законы физики, которые помогут определить емкость.
Для начала вспомним, что в случае, когда конденсатор заряжается от источника неизменного напряжения через резистор, то существует закономерность, согласно которой напряжение на устройстве будет подходить к напряжению источника и в конечном итоге сравняется с ним.
Но для того чтобы этого не ожидать, можно процесс упростить. Например, за определенное время, которое равняется 3*RC, во время заряжения элемент достигает напряжения 95% примененного к RC цепи. Таким образом, по току и напряжению можно определить константу времени. А правильнее, если знать вольтаж в блоке питания, номинал самого резистора, происходит определение постоянной времени, а затем и емкости устройства.
Например, есть электролитический конденсатор, узнать емкость которого можно по маркировке, где прописывается 6800 мкф 50в. Но что если устройство давно лежало без дела, а по надписи сложно определить его рабочее состояние? В этом случае лучше проверить его емкость, чтобы знать наверняка.
Для этого необходимо выполнить следующее:
- С помощью мультиметра измерить сопротивление резистора в 10 кОм. Например, оно получилось равно 9880 Ом.
- Подключаем блок питания. Мультиметр переводим в режим замера постоянного напряжения. Затем подключаем его к блоку питания (через его выводы). После этого в блоке устанавливается 12 вольт (на мультиметре должна появиться цифра 12,00 В). Если же не удалось отрегулировать напряжение в блоке питание, то тогда записываем те результаты, которые получились.
- С помощью конденсатора и резистора собираем электрическую RC-цепь. На схеме ниже указана простая RC-цепочка:
- Закоротить конденсатор и подключить цепь к питанию. С помощью прибора еще раз определить напряжение, которое подается на цепь, и записать это значение.
- Затем необходимо высчитать 95% от полученного значения. К примеру, если это 12 Вольт, то это будет 11,4 В. То есть, за определенное время, которое равняется 3*RC, конденсатор получит напряжение в 11,4 В. Формула выглядит следующим образом:
- Осталось определить время. Для этого устройство раскорачиваем и с помощью секундомера производим отсчет. Определение 3*RC будет вычисляться таким образом: как только напряжение на устройстве будет равно 11,4 В, то это и будет означать нужное время.
- Производим определение. Для этого полученное время (в секундах) делим на сопротивление в резисторе и на три. Например, получилось 210 секунд. Эту цифру делим на 9880 и на 3. Получилось значение 0,007085. Это величина указывается в фарадах, или 7085 мкф. Допустимое отклонение может быть не более 20%. Если учитывать, что на изделии указано 6800 мкф, наши расчеты подтверждаются и укладываются в норматив.
А как определить емкость керамического конденсатора? В этом случае можно сделать определение с помощью сетевого трансформатора. Для этого RC-цепочку подсоединяем ко вторичной обмотке трансформатора, и его подсоединяют в сеть. Далее с помощью мультиметра осуществляется замер напряжения на конденсаторе и на резисторе. После этого необходимо сделать подсчеты: высчитывается ток, что проходит через резистор, затем его напряжение делится на сопротивление. Получается емкостное сопротивление Хс.
Если есть частота тока и Хс, можно определить емкость по формуле:
Пошаговая инструкция проверки конденсатора мультиметром
Наиболее распространенная проблема, связанная с конденсатором — пробой, который приводит к снижению сопротивления в диэлектрике.
Неисправность можно определить с помощью внешнего осмотра на факт вздутия, потемнения или появления черных пятен, а также более глубокой проверки с помощью прибора.
Изучение конденсатора на факт исправности возможно после выпаивания или прямо на плате. Ниже приведем разные варианты выполнения этой работы.
Внешний осмотр
Во многих ситуациях достаточно одного взгляда, чтобы определить неисправность детали. В этом случае можно ускорить проверку и избежать применения мультиметра.
Конденсатор нужно поменять в следующих случаях:
- вздутие;
- течь жидкости изнутри;
- вмятины или механические повреждения;
- сколы или трещины (характерно для керамических изделий).
При выявления любого из указанных выше повреждений использовать деталь запрещено, и ее нужно поменять.
Проверка мультиметра полярного конденсатора
Проверке подлежат конденсаторы емкостью больше 0,25 мкФ.
Сопротивление таких емкостей небольшое, поэтому при выборе диапазона важно быть внимательным.
Во многих мультиметрах предельный диапазон равен 100 кОм, а у более мощных он может достигать 1 мОм.
Алгоритм действий, следующий:
- Снимите оставшийся заряд путем выкорачивания. Как это сделать правильно, рассмотрено выше.
- Установите подходящий предел измерений и подключите устройство к конденсатору с учетом «плюса» и «минуса» (руками к щупам касаться запрещено).
- Смотрите на параметр, указанный на экране. Он должен составлять более 100 кОм.
Отметим, что весь период замера параметр сопротивления будет меняться в большую сторону. Эта особенность будет заметна на экране.
Это связано с тем, что конденсатор заряжается от мультиметра, а в конечном итоге достигает отметки «1».
Если цифра «1» появится сразу, то это будет указывать на обрыв внутренней цепи.
Если показания не изменились, а прибор начал издавать звук, значит произошло короткое замыкание.
Проверка мультиметром неполярного конденсатора
На контроль неполярного конденсатора необходимо еще меньше времени.
Сделайте следующие шаги:
- Снимите оставшийся заряд подручным инструментом, к примеру, отверткой.
- Установите на мультиметре предел измерения в мегаомах.
- Коснитесь щупами к выводам емкости.
- При наличии сопротивления меньше 2 Мом конденсатор можно выбросить.
Особенность неполярных устройств в том, что в них не требуется соблюдение полярности. Для сравнения можно взять два устройства, чтобы один гарантированно был целым.
Если нужно проверить деталь с емкость до 0,5 мкФ, с помощью измерительного прибора сделать это не выйдет. В таком случае мультиметр будет показывать КЗ.
Для проверки неполярного конденсатора напряжением более 400 В работа делается после зарядки от источника, который защищен от короткого замыкания.
Последовательно с конденсатором подключается резистор, который рассчитан на сопротивление больше 100 Ом. Применение такого элемента позволяет уменьшить первичный бросок тока.
Существует также метод проверки на искру. В таком случае устройство нужно зарядить до рабочей величины, а после закоротить выводы с помощью отвертки (ручка инструмента должна быть изолирована).
По интенсивности искрения можно приблизительно узнать о силе разряда (для конденсаторов с небольшой емкостью, смотрите меры безопасности).
Сразу после заряда можно изменить напряжение. Конденсатор исправен, если он длительное время сохраняет заряд.
Разрядка устройства происходит постепенно через резистор. По причине сильного искрения разрядить его, к примеру, отверткой не получится.
Использование аналоговых измерителей
Для проверки конденсатора не обязательно иметь новый и современный мультиметр. Можно использовать обычную Ц4313, если она осталась со времен СССР или YX-1000A.
Способ измерения такой же, но сами проверки более наглядны с визуальной точки зрения.
Здесь нужно смотреть не на цифры, а на движение стрелки прибора.
Для проверки сделайте следующее:
- Жмите на кнопку RX.
- Вставьте щупы в специальные разъемы.
- Берите конденсатор и разрядите его.
- Прикоснитесь щупами к конденсатору.
- Если деталь исправна, стрелка будет отклоняться, а потом плавно вернется в первоначальную позицию. Скорость движения зависит от емкости проверяемого конденсатора.
Если при проверке стрелка не отклоняется или зависла в конкретной позиции, это свидетельствует о неисправности детали.
Самый простой способ
Самым простым и в то же время предварительным способом проверить этот элемент, не выпаивая его из схемы, является визуальный осмотр. Отломившаяся ножка автоматически превращает деталь в нерабочую и подлежащую замене.
При наличии на плате электролитических конденсаторов — они легко опознаются по цилиндрической форме с крестообразной риской на шляпке, а также фольгированному покрытию — в первую очередь надо проверить их.
Для данной группы элементов характерно «вздутие». Это микровзрыв находящегося внутри электролита, который может произойти, например, из-за скачка рабочего напряжения.
Если «цилиндрик» вздут, лопнул по риске на верхушке, на плате обнаруживаются потеки электролита, то его безоговорочно меняют. Зачастую после этого прибор начинает нормально работать.
Если этого не происходит — рекомендуется проверить остальные конденсаторы и другие детали.
В профессиональных ремонтных или наладочных организациях для этого используют профессиональные же приборы — LC-тестеры, или тестеры емкости. Они достаточно дороги, а потому в «хозяйстве» обычного электромонтера встречаются редко.
Но при ремонте большинства плат бытовых устройств в них и нет необходимости — провести проверку емкости конденсатора можно и обычным мультиметром.
Особенности проверки
Конденсатор проверяется на исправность различными методами. Основной способ — с выпаиванием из схемы. Иногда можно проверить работоспособность без выпаивания. Но результаты исследования не будут точны — на него влияют прочие компоненты. Для проверки в цепи применяются тестеры с крохотным напряжением на щупах. Малое напряжение предотвращает повреждение остальных элементов платы.
Вне зависимости от особенностей моделей, все электролитические конденсаторы обладают высокой мощностью. При выполнении проверки происходит их подзарядка. Ее продолжительность составляет всего несколько секунд. В процессе зарядки наблюдается увеличение уровня сопротивления, с движением стрелки тестера или изменением цифровых показателей в электронном мультиметре.
Полярные конденсаторы
Эти электролитические кондеры обладают полярностью. При включении в сеть необходима проверка правильного подсоединения. Плюсы соединяем с плюсами, а минусы — с минусами. Игнорирование этого правила приводит к взрыву электролита.
Электролит бывает твердым или жидким. Емкость элементов составляет 0,1—100000 мкФ. Предназначение элементов — выравнивание и фильтрация сигналов. Метки «-» и «+» нанесены на корпусе. Положительный вывод имеет большую длину. При перепутывании полярности происходит пробой диэлектрика, в результате чего электролит мгновенно испаряется и корпус разрывает. Диэлектриком является бумага, пропитанная электролитом. Современные корпуса сверху вдавлены и рассечены крестом. При взрыве распадается не весь, а только верхняя часть. Учитывая специально ослабленные элементы, при неисправности видно вспучивание верхней части.
Неполярные конденсаторы
Отличить визуально неполярный от полярного просто — у него не будет маркировки полярности на корпусе. У неполярных материал диэлектрика другой. Состоит из керамики или стекла. Ток саморазрядки намного меньше, учитывая большую диэлектрическую сопротивляемость, чем у бумаги. Ток утечки тем ниже, чем выше сопротивляемость диэлектрической перегородки.
Соблюдать полярность при включении в схему совсем необязательно. Иногда такие кондеры изготавливают очень маленькими и включают в схему в больших количествах.
Емкость деталей небольшая — от микрофарадов до пикофарадов.
Проверка на отсутствие внутреннего обрыва
Обрыв – распространенный дефект конденсатора, при котором один из его электродов теряет электрическое соединение с обкладкой и фактически превращается в короткий, ни с чем не соединенный (висящий в воздухе), проводник. Чаще всего обрыв происходит из-за превышения рабочего напряжения конденсатора. Этим грешат не только электролитические конденсаторы, но и специальные помехоподавляющие конденсаторы типа Y (они, кстати говоря, специально так спроектированы, чтобы уходить в отрыв, а не в КЗ).
Конденсатор с внутренним обрывом внешне ничем не отличается от исправного, кроме случаев, когда ножку физически оторвали от корпуса. Разумеется, в случае отрыва одного из выводов от обкладки конденсатора, емкость такого конденсатора становится равной нулю. Поэтому суть проверки на обрыв состоит в том, чтобы уловить хоть малейшие признаки наличия емкости у проверяемого конденсатора.
Способ №1: исключение обрыва через звуковой сигнал в режиме прозвонки
Включить мультиметр в режим прозвонки, прикоснуться щупами к выводам конденсатора и в этот момент мультиметр должен издать непродолжительный писк. Иногда звук настолько короткий (зависит от емкости конденсатора), что больше похож на щелчок и нужно очень постараться, чтобы его услышать. Небольшой лайфхак: чтобы увеличить продолжительность звукового сигнала при прозвонке совсем маленьких конденсаторов, нужно предварительно зарядить их отрицательным напряжением, приложив щупы мультиметра в обратном порядке.
Тогда при последующей прозвонке мультиметру сначала придется перезарядить конденсатор от какого-то отрицательного напряжения до нуля, и только потом – от нуля до момента отключения пищалки. На все это уйдет значительно больше времени, а значит сигнал будет звучать дольше и его проще будет расслышать. Из своей практике могу сказать, что с помощью уловки, описанной выше, мне удавалось уловить реакцию мультиметра на конденсатор емкостью всего лишь 0.1 мкФ (или 100 нФ)!
Способ №2: увеличение сопротивления постоянному току как признак отсутствия обрыва
По мере заряда конденсатора от внутреннего источника мультиметра, его сопротивление будет постоянно расти до тех пор, пока не выйдет за пределы диапазона измерения. Если такой эффект наблюдается, значит обрыва нет. Кстати говоря, может так оказаться, что рост сопротивления остановится на значении от единиц до пары десятков МОм – для конденсаторов с жидким электролитом (кроме танталовых) это абсолютно нормально. Для остальных конденсаторов сопротивление утечки должно быть больше, как минимум, на порядок.
При измерении таких высоких сопротивлений необходимо следить за тем, чтобы не касаться пальцами сразу обоих измерительных щупов. Иначе сопротивление кожи внесет свои коррективы и исказит все результаты. С помощью измерения сопротивления на пределе 200 МОм мне удавалось однозначно определить отсутствие обрыва в конденсаторах емкостью всего 0.001 мкФ (или 1000 пФ).
Способ №3: измерение остаточного напряжения для исключения внутреннего обрыва
Затем мы быстро переключаем мультиметр в режим измерения постоянного напряжения на самом чувствительном диапазоне и, не мешкая слишком долго, снова прикладываем щупы к конденсатору, чтобы измерить на нем напряжение. Если у кондера есть хоть какая-нибудь вразумительная емкость, то мультиметр успеет показать напряжение, до которого был заряжен конденсатор. Этим способом мне удавалось с помощью обычного цифрового мультиметра M890D отловить емкость вплоть до 470 пФ (0.00047 мкФ)!
Это очень маленькая емкость. Вообще говоря, это наиболее эффективный метод прозвонки конденсаторов. Таким способ можно проверять кондеры любой емкости – от малюсеньких до самых больших, а также любого типа – полярные, неполярные, электролитические, пленочные, керамические, оксидные, воздушные, металло-бумажные и т.д. Правда, если конденсатор имеет совсем маленькую емкость, до 470 пФ, то, увы, проверить его на обрыв без специального прибора, вроде упомянутого ранее LC-метра, никак не получится.
Блиц-советы
- При сбоях в схеме проверяется дата выпуска конденсаторного элемента. За 5-летний срок эксплуатации возможно «усыхание» данной детали на 55 – 75%. Поэтому слишком старую деталь лучше сразу заменять, потому что даже рабочий элемент будет вносить некоторые искажения.
- Для максимальной точности результатов измерений перед проверочным процессом в оборудование необходимо поставить новую батарейку.
- До проверки конденсатор рекомендуется выпаивать из схемы полностью или только 1-ну ножку. Если элемент большой и имеет подводку проводов, то отсоединению подвергается 1 из них. Иначе результат будет искажен.
- Касание руками выводов конденсатора при его проверке строго запрещено. Это объясняется тем, что человеческое тело имеет сопротивление в 4 Ом, которое способно исказить результат поверки.
- Для современных мультиметров максимальным пределом измерения будет емкость до 200 мкФ. Номинал элементов емкостью до 0.25мкФ подвергаются проверке на наличие короткого замыкания. Если превысить допустимые значения измерения, мультиметру грозит поломка, даже несмотря на установленный внутри него предохранитель.
- При работе с высоковольтными схемами не стоит забывать о технике безопасности. Любой такой ремонт должен начинаться после того, как ремонтируемое оборудование выключено и электрокомпонент разряжен разрядной цепью.
- Чтобы проверить деталь большой емкости, может подойти более экстремальный способ. После того, как элемент зарядится полностью, производят замыкание его выводов на предмете из металла. Предварительно данный предмет должен быть покрыт изолятором, и имеет смысл работать в резиновых перчатках. Появление искры и одновременно характерное звуковое сопровождение будет служить результатом процесса разряда.
Общая концепция
Конденсатор состоит из двух проводящих обкладок и диэлектрика между ними. И все, больше ничего. С виду простая радиодеталь, но работает на высоких и низких частотах по-разному.
Обозначается на схеме двумя параллельными линиями.
Принцип работы
Эта радиодеталь хорошо демонстрирует явление электростатической индукции. Разберем на примере.
Если подключить к конденсатору постоянный источник тока, то в начальный момент времени ток начнет скапливаться на обкладках конденсатора. Это происходит за счет электростатической индукции. Сопротивление практически равно нулю.
Электрическое поле за счет электростатической индукции притягивает разноименные заряды на две противоположные обкладки. Это свойство материи называется емкостью. Емкость есть у всех материалов. И даже у диэлектриков, но у проводников она значительно больше. Поэтому обкладки конденсатора выполнены из проводника.
Основное свойство конденсатора — это емкость. Она зависит от площади пластин, расстояния между ними и материала диэлектрика, которым заполняют пространство между обкладками.
По мере накопления зарядов, поле начинает ослабевать, а сопротивление нарастает. Почему так происходит? Места на обкладках все меньше, одноименные заряды на них действуют друг на друга, а напряжение на конденсаторе становится равным источнику тока. Такое сопротивление называется реактивным, или емкостным. Оно зависит от частоты тока, емкости радиодеталей и проводов.
Когда на обкладках не останется места для электрического тока, то и ток в цепи прекратится. Электростатическая индукция пропадает. Теперь остается электрическое поле, которое держит заряды на своих обкладках и не отпускает их. А электрическому току некуда деваться. Напряжение на конденсаторе станет равным ЭДС (напряжению) источнику тока.
А что будет, если повысить ЭДС (напряжение) источника тока? Электрическое поле начнет все сильнее давить на диэлектрик, поскольку места на обкладках уже нет. Но если напряжение на конденсаторе превысит допустимые знания, то диэлектрик пробьет. И конденсатор станет проводником, заряды освободятся, и ток пойдет по цепи. Как тогда использовать конденсатор для высоких напряжений? Можно увеличить размер диэлектрика и расстояние между обкладками, но при этом уменьшается емкость детали.
Между обкладками находится диэлектрик, который препятствует прохождению постоянного тока. Это именно барьер для постоянного тока. Потому, что постоянный ток создает и постоянное напряжение. А постоянное напряжение может создавать электростатическую индукцию только при замыкании цепи, то есть, когда конденсатор заряжается.
Так конденсатор может сохранять энергию до тех пор, пока к нему не подключится потребитель.
Конденсатор и цепь постоянного тока
Добавим в схему лампочку. Она загорится только во время зарядки.
Еще одна важная особенность — когда происходит процесс зарядки током, то напряжение отстает от тока. Напряжение как бы догоняет ток, поскольку сопротивление нарастает плавно, по мере зарядки. Электрические зарядам нужно время, чтобы переместиться к обкладкам конденсатора. Так называется время зарядки. Оно зависит от емкости, частоты и напряжения.
По мере зарядки, лампочка начинает тусклее светиться.
Лампочка затухает при полной зарядке.
Постоянный электрический ток не проходит через конденсатор только после его зарядки.
Цепь с переменным током
А что если поменять полярность на источнике тока? Тогда конденсатор начнет разряжаться, и снова заряжаться, поскольку меняется полярность источника.
Электростатическая индукция возникает постоянно, если электрический ток переменный. Каждый раз, когда ток начинает менять свое направление, начинается процесс зарядки и разрядки.
Поэтому, конденсатор пропускает переменный электрический ток.
Чем выше частота — тем меньше реактивное (емкостное) сопротивление конденсатора.