Как определить полярность светодиода
Полярность светодиода можно определить тремя способами:
- У традиционного светодиода, длинная ножка (анод) является ПЛЮСом. А короткая (катод) соответственно МИНУСом. На пластиковом основании (головке) светодиода есть срез, он обозначает расположение катода или минуса.
- Присмотритесь внутрь светика. Контакт в виде флажка — минус. Тонкий контакт — плюс.
Используйте мультиметр. Установите центральный переключатель в режим «прозвонки». Щупами прикоснитесь к контактам проверяемого светодиода. Если светодиод засветится — тогда красный щуп прижат к плюсу светодиода а черный, соответственно к минусу.
N.B. Хотя на практике последний способ иногда не подтверждается.
Номинальное напряжение для большинства светодиодов 2,2 — 3 вольта. Светодиодные ленты и модули, которые работают от 12 и более вольт, уже содержат в схеме резисторы.
Распиновка светодиода
Прежде чем перейти к рассмотрению вопроса о правильном подключении светодиода, необходимо научиться определять его полярность. Чаще всего индикаторные светодиоды имеют два вывода: анод и катод. Гораздо реже в корпусе диаметром 5 мм встречаются экземпляры, имеющие 3 или 4 вывода для подключения. Но и с их распиновкой разобраться тоже несложно.
SMD-светодиоды могут иметь 4 вывода (2 анода и 2 катода), что обусловлено технологией их производства. Третий и четвёртый выводы могут быть электрически незадействованными, но использоваться в качестве дополнительного теплоотвода. Приведенное расположение выводов не является стандартом. Для вычисления полярности лучше сначала заглянуть в datasheet, а затем подтвердить увиденное мультиметром. Визуально определить полярность SMD-светодиода с двумя выводами можно по срезу. Срез (ключ) в одном из углов корпуса всегда расположен ближе к катоду (минусу).
Как выбрать нужный драйвер?
Тут все очень просто. Выбирать нужно всего лишь по трем параметрам:
- выходной ток;
- максимальное выходное напряжение;
- минимальное выходное напряжение.
Выходной (рабочий) ток драйвера светодиодов — это самая важная характеристика. Ток должен быть равен оптимальному току для светодиодов.
Например, в нашем распоряжении оказалось 10 штук полноспектральных светодиодов для фитолампы:
Номинальный ток этих диодов — 700 мА (берется из справочника). Следовательно, нам нужен драйвер тока на 700 мА. Ну или чуточку меньше, чтобы продлить срок жизни светодиодов.
Максимальное выходное напряжение драйвера должно быть больше, чем суммарное прямое напряжение всех светодиодов. Для наших фитосветодиодов прямое напряжение лежит в диапазоне 3…4 вольта. Берем по-максимуму: 4В х 10 = 40В. Наш драйвер должен быть в состоянии выдать не менее 40 вольт.
Минимальное напряжение, соответственно, рассчитывается по минимальному значению прямого напряжения на светодиодах. То есть оно должно быть не более 3В х 10 = 30 Вольт. Другими словами, наш драйвер должен уметь снижать выходное напряжение до 30 вольт (или ниже).
Таким образом, нам нужно подобрать схему драйвера, рассчитанного на ток 650 мА (пусть будет чуть меньше номинального) и способного по необходимости выдавать напряжение в диапазоне от 30 до 40 вольт.
Следовательно, для наших целей подойдет что-нибудь вроде этого:
Разумеется, при выборе драйвера диапазон напряжений всегда можно расширять в любую сторону. Например, вместо драйвера с выходом на 30-40 В прекрасно подойдет тот, который выдает от 20 до 70 Вольт.
Примеры драйверов, идеально совместимых с различными типами светодиодов, приведены в таблице:
Светодиоды | Какой нужен драйвер |
---|---|
60 мА, 0.2 Вт (smd 5050, 2835) | см. схему на TL431 |
150мА, 0.5Вт (smd 2835, 5630, 5730) | драйвер 150mA, 9-34V (можно одновременно подключить от 3 до 10 светодиодов) |
300 мА, 1 Вт (smd 3528, 3535, 5730-1, LED 1W) | драйверы 300мА, 3-64V (на 1-24 последовательно включенных светодиода) |
700 мА, 3 Вт (led 3W, фитосветодиоды) | драйвер 700мА (для 6-10 светодиодов) |
3000 мА, 10 Ватт (XML2 T6) | драйвер 3A, 21-34V (на 7-10 светодиодов) или см. схему |
Кстати, для правильного подключения светодиодов вовсе не обязательно покупать готовый драйвер, можно просто взять какой-нибудь подходящий блок питания (например, зарядник от телефона) и прикрутить к нему простейший стабилизатор тока на одном транзисторе или на LM317.
Готовые схемы стабилизаторов тока для светодиодов можно взять из этой статьи.
Распиновка светодиода
Прежде чем перейти к рассмотрению вопроса о правильном подключении светодиода, необходимо научиться определять его полярность. Чаще всего индикаторные светодиоды имеют два вывода: анод и катод. Гораздо реже в корпусе диаметром 5 мм встречаются экземпляры, имеющие 3 или 4 вывода для подключения. Но и с их распиновкой разобраться тоже несложно.
SMD-светодиоды могут иметь 4 вывода (2 анода и 2 катода), что обусловлено технологией их производства. Третий и четвёртый выводы могут быть электрически незадействованными, но использоваться в качестве дополнительного теплоотвода. Приведенное расположение выводов не является стандартом. Для вычисления полярности лучше сначала заглянуть в datasheet, а затем подтвердить увиденное мультиметром. Визуально определить полярность SMD-светодиода с двумя выводами можно по срезу. Срез (ключ) в одном из углов корпуса всегда расположен ближе к катоду (минусу).
Как подключить светодиод к 12 вольтам
Светодиоды уже давно используются в различных сферах жизни и деятельности людей. Благодаря своим качествам и техническим характеристикам, они приобрели широкую популярность. На основе этих источников света создаются оригинальные светотехнические конструкции. Поэтому у многих потребителей до воль но часто возникает вопрос, как подключить светодиод к 12 воль там. Данная тема очень актуальна, поскольку такое подключение имеет принципиальные отличия от других типов ламп. Следует учитывать, что для работы светодиодов используется только постоянный ток. Большое значение имеет соблюдение полярности при подключении, в противном случае, светодиоды просто не будут работать.
Что нужно знать автолюбителю перед заменой?
Обычная светодиодная лампа
Перед тем, как вы решите подобрать и включить мощные и сверхъяркие светодиодные автомобильные лампы 12в вместо обычных, необходимо ознакомиться с основными данными. В первую очередь, поймите, что светодиод — это не лампа. Любые неправильные действия в процессе замены могут вызвать серьезные проблемы, и это касается не только диодных дамп, но и любых действий с проводкой в целом. В общем в этом процессе ничего сложного нет, но все-таки некоторые моменты следует учитывать.
Если вы решили подключить мощные и сверхъяркие автомобильные светодиодные лампочки, то учтите несколько нюансов:
Помните о том, что вы не сможете просто извлечь автомобильную лампу из фары и включить мигающую диодную в бортовую сеть машины. Так вы его только сожжете, но результата не будет никакого. Также учитывайте, что автомобильные диодные элементы для фар и других целей разделяются по размерам, мощности, числу кристалликов, расположенных внутри. Кроме того, они обладают разной яркостью и цветом. В любом случае, в корпусе диодного компонента будет находиться полупроводниковый кристаллик, излучающий свет при прохождении напряжения через него.
Как делятся светодиоды для фар авто по мощности:
Учитывая все эти факторы, вы сможете определиться с тем, какой диод 12 вольт вам нужен. После этого можно приступать к подключению своими руками. Разумеется, если вы делаете это впервые, желательно использовать схему.
Схема подключения модуля для стоп-сигналов и габаритов
Виды источников питания на 12 В
Светодиод любого типа должен подключаться к источнику питания (ИП) со стабилизированным током на выходе. Однако производители светодиодных светильников часто экономят на качестве и устанавливают в них недорогие блоки питания с отсутствие стабилизации.
Наиболее распространены бестрансформаторные блоки питания (БП) на 12 В с гасящим конденсатором и токозадающим резистором на выходе. В таких схемах отсутствует какая-либо стабилизация и защита. В результате скачки сетевого напряжения ничем не нивелируются и негативно отражаются на работе светильника. Тем не менее, схема настолько дешевая, что часто встречается в светодиодных лампах и прочих устройствах.
При подключении маломощных светодиодов от аккумулятора с напряжением питания 12 В можно ограничиться резистором, правильно подобранным по сопротивлению и мощности. Исключение составляет бортовая сеть автомобиля, в которой напряжение может колебаться в широких пределах. Так что при конструировании светодиодной схемы, например для автомобиля, без стабилизатора тока (драйвера) не обойтись.
В самом простом случае драйвер можно сконструировать своими руками на линейной ИМС LM317T, стоимость которой составляет около 0,2$. В этом случае для получения стабильного напряжения на 12 В достаточно минимального набора элементов в обвязке. При суммарном токе через светодиоды до 300 мА она отлично работает без дополнительного охлаждения. Типовая схема включения LM317T в качестве стабилизатора тока приведена ниже.
Существуют также нестабилизированные блоки питания, в которых последовательно включены: понижающий трансформатор, выпрямитель и емкостной фильтр (конденсатор). Их использование оправдано лишь в жилых районах со стабильным напряжением сети, так как любое проявление скачков и импульсных помех будет отрицательно влиять на работу светодиодов.
Для светодиодов гораздо надёжнее импульсные источники питания на 12 В. Они гарантируют высокий КПД, стабильный выходной ток и напряжение при перепадах сети питания.
Разновидностью импульсного ИП на 12 В можно считать компьютерный блок питания. В старых моделях на 250 Вт нагрузочная способность по выходу +12 В составляет 10 А, что более чем достаточно для включения нескольких мощных светодиодов даже с падением напряжения 12 вольт. Если габариты и шум вентилятора – не помеха, то бывшему в употреблении блоку питания от компьютера можно подарить вторую жизнь.
Если же форм-фактор и эстетические показатели имеют значения, то для светодиода или светодиодной сборки лучше купить готовый БП на 12 В. Его стоимость сильно зависит от мощности и варианта исполнения (в корпусе или без него).
Для тех, кто плохо разбирается в электричестве, напомним, что существуют источники переменного напряжения на 12 В. Внутри такого блока расположен понижающий трансформатор с предохранителем, а на корпусе присутствует надпись: «Output AC 12 V», что означает: «выходное переменное напряжение 12 В». К нему запрещается напрямую подключать светодиоды. Чтобы использовать его в светодиодном освещении, нужно как минимум, дополнить схему диодным мостом, конденсатором и стабилизатором тока на LM317T.
Общий совет по установке светодиодных узлов
Выбор комплектующих.
По статистике спросом пользуются более сотни типов лент, около 50 моделей блоков питания, до 30 диммеров и контроллеров. Для начала необходимо определить поставленные задачи. Они могут быть следующими: подсветка потолка и ниши, дополнительное освещение кухни, интерьера комнат, спальни, ванной, шкафов, баров и т. д.
- Проверка качества контактов на ленте. Они имеют вид четырёх проводков, припаянных к торцу платы.
- Места припайки не всегда бывают прочным.
- Проверяют соединения, изолируют их. Оторванный может вызвать замыкание.
Для надёжности заделывают новые, длинные с обжимными наконечниками и усиленные термоусадочной трубкой диаметром 10 мм. Одев её на контакты светодиодной ленты, аккуратно нагревают. При этом избегают попадания горячего воздуха на полупроводник. Размягчённая трубка уменьшается в размере, прижимая контакты, изолируя и улучшая прочность соединения. Такая подготовка к монтажу обеспечивается длительный срок использования.
Наличие инструмента и комплектующих изделий. Для устройства нужно иметь: провода, трубки, фен, ножницы, паяльник и сопутствующие материалы.
Есть и более простой вариант решения. Можно приобрести готовый набор для монтажа светодиодных устройств. В его состав входят: ленты, блоки питания, контроллер, диммер, крепёж, разъёмы, провода. Кроме того, перечень содержимого набора дополняется пожеланиями заказчика.
Место монтажа ленты очищают, обезжиривают. Потом со стороны клеевого слоя снимают защитную плёнку и нажатием закрепляют к подготовленной плоскости.
Подключение светодиода – принцип действия
Принцип действия светодиода основан на рекомбинации электронов и дырок, в процессе которой происходит выброс фотонов ввиду их перехода из одного энергетического уровня на другой. Проще говоря, при подключении р-n переход, построенный на комбинации определенных полупроводниковых материалов, начинает излучать свет
Стоит обратить внимание, что свечение происходит только при «прямом» прохождении электротока
Вас может заинтересовать – «Подключение лампы ДРЛ».
Сегодня отечественная и зарубежная промышленность производит огромное количество СИД с разнообразным спектром излучения. Это стало возможным с применением различных неорганических полупроводниковых материалов. Ниже приведена таблица, в которой показана зависимость излучаемого спектра от примененных материалов.
Подключение светодиода – способы и схемы
Подключение светодиода к блоку питания или в цепь индикации сводится к правильной определении полярности СИД и, как говорилось выше, подбору ограничивающего резистора. Про второе написано выше, а как правильно определить полярность читайте далее. Итак, обычно индикаторные светодиоды имеют два вывода, плюс и минус или анод и катод соответственно. У DIP LED минусовой вывод всегда короче плюсового. У SMD в районе катода выполнен срез (ключ). Но самый надежный способ определить, где плюс и минус — «прозвонить» мультиметром. В режиме проверки диода при подключении черного щупа COM к плюсу, а красного к минусу показания на дисплее тестера изменится, а светодиод загорится. Все просто!
Наконец, настало время выполнить подключение светодиода к блоку питания. Смотрим на схему и смело подключаем.
Мощные LED, как правило, подключаются через драйверы. Здесь не требуется ограничивать ток, и СД подсоединяется напрямую без дополнительных радиоэлементов. Единственным условием такого подключения является то, что ток драйвера должен быть равен или ниже номинального тока диода.
Теперь давайте рассмотрим варианты подключения нескольких излучающих диодов одновременно. Существует три вида соединений: последовательное, параллельное и смешанное.
При последовательном соединении через каждый элемент протекает одинаковый по величине ток, при условии, что все элементы одного типа. Падения напряжения в этом случае складываются.
При параллельном – происходит в точности до наоборот, токи складываются, а падения остаются. При этом методе на каждый светодиод необходимо свое ограничивающее сопротивление.
При смешанном – оба способа объединяются.
Подключение к сети 220в
Иногда возникает необходимость подключения светодиода к сети 220в. Реализовать такую схему тоже достаточно просто. Кроме ограничивающего резистора, требуется включение в схему диода, защищающего светодиод от обратного напряжения. Параметры ограничителя вычисляются по формулам:
Последовательное подключение светодиодов
При последовательном соединении через токоограничивающий резистор в одну цепочку собираются несколько светодиодов, причем катод предыдущего припаивается к аноду последующего:
В схеме, по всем светодиодам будет проходить один ток (20мА), а уровень напряжения будет состоять из сумм падения напряжения на каждом. Это означает, используя данную схему подключения, нельзя включить в цепь любое количество светодиодов, т.к. оно ограничено падением напряжения.
Падение напряжения – это уровень напряжения, которое светоизлучающий диод преобразует в световую энергию (свечение).
Например, в схеме падение напряжения на одном светодиоде составит 3 Вольта. Всего в схеме 3 светодиода. Источник питания 12В. Считаем, 3 Вольта * 3 led = 9 В — падение напряжения.
После несложных расчетов, мы видим, что не сможем включить в схему последовательного подключения более 4 светодиодов (3*4=12В), запитывая их от обычного автомобильного аккумулятора (или другого источника с напряжением 12В).
Если захотим последовательно подключить большее количество LEd, то понадобится источник питания с большим номиналом.
Данная схема довольно часто встречалась в елочных гирляндах, однако из-за одного существенного недостатка в современных светодиодных гирляндах применяют смешанное подключение. Что за недостаток, разберем ниже.
- Недостатки последовательного подключения:
- При выходе из строя хотя бы одного элемента, не рабочей становится вся схема.
- Для питания большого количества led нужен источник с высоким напряжением.
Подключение мигающих и многоцветных светодиодов
Внешне мигающие светодиоды ничем не отличаются от обычных аналогов и могут мигать одним, двумя или тремя цветами по заданному производителем алгоритму. Внутреннее отличие состоит в наличии под корпусом ещё одной подложки, на которой расположен интегральный генератор импульсов. Номинальный рабочий ток, как правило, не превышает 20 мА, а падение напряжения может варьироваться от 3 до 14 В. Поэтому перед подключением мигающего светодиода нужно ознакомиться с его характеристиками. Если их нет, то узнать параметры можно экспериментальным путём, подключившись к регулируемому БП на 5–15 В через резистор сопротивлением 51-100 Ом.
В корпусе многоцветного RGB-светодиода расположены 3 независимых кристалла зелёного, красного и синего цвета. Поэтому при расчёте номиналов резисторов нужно помнить, что каждому цвету свечения соответствует своё падение напряжения.
Методы подключения
Простейшим методом подключения светильника к сети на 220 В является использование гасящего сопротивления, расположенного последовательно светодиоду. Напряжение постоянно изменяется, амплитудное значение может достигать 310 В. Данная величина должна обязательно учитываться при расчетах сопротивления.
Также следует обеспечить защиту диода от обратного напряжения, равного прямому. Рассмотрим основные способы.
Последовательное подключение диода с высоким напряжением обратного пробоя (400 В и более)
В данном случае правильно подключить к схеме выпрямительный диод 1N4007, обратное напряжение которого составляет 1000 В. Если будет изменена полярность и напряжение пойдет в обратном направлении, то оно будет сглажено выпрямительным диодом, защищающим светодиод от пробоя.
Шунтирование светодиода обычным диодом
Этот способ подразумевает использование простого маломощного полупроводника, подключаемого по встречно-параллельному курсу со светодиодом. Обратное напряжение будет воздействовать на гасящее сопротивление, поскольку диод включен в прямом направлении.
Встречно-параллельное подключение двух светодиодов
Способ схож с предыдущим методом, за исключением того, что светодиоды будут гореть только на своем отрезке синусоиды, обеспечивая друг для друга защиту от пробоя.
Существенным недостатком подключения светодиодов к сети 220 В через гасящий резистор является то, что на сопротивлении выделяется огромная мощность.
Рассмотрим пример. Предположим, что используется гасящий резистор сопротивлением 24 кОм при подключении светодиодов к сети 220 В с выходящим током 9 мА. Рассчитаем мощность на гасящем сопротивлении: 9*9*24=1944 мВт (около 2 Вт). Таким образом, чтобы обеспечить оптимальную эксплуатацию, нужно взять резистор мощностью не ниже 3 Вт.
Поэтому роль токоограничивающего элемента должен играть конденсатор, на котором не рассеивается мощность, поскольку сопротивление является реактивным.
В простейшей схеме подключения светодиодного осветительного прибора через конденсатор наблюдается следующая картина: после прекращения питания в конденсаторе сохраняется остаточный заряд – источник угрозы для безопасности человека, который должен разряжаться с помощью сопротивления. Второй резистор требуется при включении питания для защиты схемы от тока, идущего через конденсатор. Выпрямительный диод служит для защиты led-диода от обратного напряжения. Выбирайте конденсатор неполярного типа, рассчитанный для эксплуатации в сети с напряжением не ниже 400 В.
Категорически запрещено использовать полярные конденсаторы в сети переменного тока, поскольку проходящий в обратном направлении ток приведет к разрушению конструкции.
Для расчета нужной емкости конденсатора используют эмпирическую формулу, где производное 4,45 и тока, проходящего через светодиоды, нужно разделить на разницу между амплитудной величиной тока (указана выше – 310 В) и падением напряжения на светодиоде после прямого прохождения.
Например, если нужно подключить led-диод с падением напряжения 3 В и током 9 мА, то по формуле выше емкость конденсатора будет равна 0,13 мкФ. На данную величину в большей степени влияет сила тока, меньшей – падение напряжения.
Эмпирическая формула может использоваться при расчетах емкости конденсатора для сети частотой 50 Гц, поскольку в остальных случаях коэффициент 4,45 требует перерасчета.
Монтаж неоновой подсветки в салоне машины своими руками
Практика показывает, что монтаж неоновой подсветки салона авто лучше всего начинать с пола. Готовим капроновые хомуты, алюминиевый уголок, неоновые лампы и саморезы.
Отрезаем разъёмы для прикуривателя, зачищаем концы. Готовим уголок, подгоняя его под размер ламп, используя заранее приготовленные хомуты. Монтируем её под торпеду салона. Теперь место для ног водителя подсвечено.
Таким образом, устанавливаем дополнительное освещение в любом месте салона авто. Соединительные провода прячем под ковриками, направляя к торпеде со стороны водительского сидения.
Стыки проводки изолируются. Комплект подключается к датчику открытия двери и/или включателю освещения салона. В качестве источника питания можно использовать АКБ, предварительно сняв дворники.
Закончив работу, дворники устанавливаются обратно, на своё место. Теперь, перед открытием дверей авто, его пассажиров ждёт приятный сюрприз – приятная неоновая подсветка.
Расчёт ограничительного резистора
Взглянув на вольт-амперную характеристику светодиода, становится понятно: насколько важно не ошибиться при расчёте ограничительного резистора
- U – напряжение питания, В;
- ULED – прямое падение напряжения на светодиоде (паспортное значение), В;
- I – номинальный ток (паспортное значение), А.
Полученный результат следует округлить до ближайшего номинала из ряда Е24 в большую сторону, а затем рассчитать мощность, которую должен будет рассеивать резистор:
R – сопротивление резистора, принятого к установке, Ом.
Более подробную информацию о расчётах с практическими примерами можно получить в статье о расчете резистора для светодиода. А тот, кто не желает погружаться в нюансы, может быстро рассчитать параметры резистора с помощью онлайн-калькулятора.
Как выбрать светодиод для подключения к 12 вольтам
Необходимый вид диодов подбирают исходя из конкретных задач. На рынке существует множество вариантов, от индикаторных до сверхмощных. Для подсветки кнопок и индикаторов на панели приборов в авто можно использовать маломощные диоды. Для подсветки интерьера квартиры или машины применяют простые сверхъяркие. Для установки в головную оптику, дневные головные огни автомобилей или в фонарики устанавливают мощные светодиоды.
Важным фактором является размер и форма корпуса. В зависимости от предназначения могут использоваться диоды в круглом корпусе или детали поверхностного монтажа (SMD). Все зависит от потребности и задач.
Нюансы подключения к сети 220 Вольт
Схема подключения светодиода к сети 220В
При использовании различных схем подключения светодиода к сети 220 В возможны некоторые нюансы, учет которых поможет избежать элементарных ошибок в коммутации электрических цепей. Они в основном связаны с величиной тока, протекающего через цепочку при подаче на нее питания. Для их понимания потребуется рассмотреть простейший прибор типа подсветки для декорирования, состоящий из целого набора светодиодных элементов или обычный светильник на их основе.
Значительное внимание обращается на особенности процессов, протекающих в выключателе в момент подачи питания. Для обеспечения «мягкого» режима включения к его контактам потребуется подпаять в параллель гасящий резистор и светодиод-индикатор, обозначающий включенное состояние
Значение сопротивления подбирается по методикам, описанным ранее.
Только после выключателя с резистором в схеме располагается сама лента с чипами светодиодных элементов. В ней не предусмотрены защитные диоды, так что величина гасящего резистора подбирается из расчета протекающего по цепи тока, он не должен превышать значения порядка 1 мА.
Светодиодный индикатор-лампочка в этой схеме выполняет функцию нагрузки, еще больше ограничивающей ток. Из-за небольшой величины он будет светиться очень тускло, но этого вполне хватает для ночного режима. При действии обратной полуволны напряжение частично гасится на резисторе, что защищает диод от нежелательного пробоя.
OSRAM › Блог › Как установить светодиодные лампы и не пожалеть об этом?
Совсем недавно мы уже касались темы дешевых некачественных LED-ламп. Рассказывали о том, что многие водители в пытаются сэкономить, но в результате получают негативный опыт использования светодиодов: дорогу не освещают, слепят встречных водителей, перегорают через месяц.
Но технологии не стоят на месте, на рынке появляются новые продукты с приятной ценой и премиальным качеством. Сегодня мы расскажем о совершенно новых бюджетных светодиодных лампах OSRAM.
Не слепят, а светят
Линейка LEDriving HL стартует с двух стандартных цоколей: H4 и H7. Но совсем скоро ассортимент расширится. А пока давайте выясним, в чем преимущества этих ламп. Во-первых, они имеют продуманный дизайн и компактный корпус со встроенной электроникой. Это значит, что установка в стандартную фару не отнимет у вас много времени и не потребует изобретать дополнительных переходников.
Во-вторых, светодиодные чипы в этих лампах специально разработаны для автомобильной промышленности. Геометрия LED-элемента практически на 100% соответствует размеру и позиции нити накала галогенной лампы.
Технические особенности диода
По определению светодиод, схема которого схожа с обычным диодом, – это тот же полупроводник, пропускающий ток в одном направлении и излучающий свет при его протекании. Его рабочий переход не рассчитан на высокие напряжения, поэтому для загорания светодиодного элемента вполне достаточно всего нескольких вольт. Другой особенностью этого прибора является необходимость подачи на него постоянного напряжения, так как при переменных 220 Вольт светодиод будет мигать с частотой сети (50Герц). Считается, что глаз человека не реагирует на такие мигания и что они не причиняют ему вреда. Но все же согласно действующим стандартам для его работы нужно использовать постоянный потенциал. В противном случае приходится применять особые меры защиты от опасных обратных напряжений.
Большинство образцов осветительной техники, в которых диоды используются в качестве элементов освещения, включаются в сеть через специальные преобразователи – драйверы. Эти устройства необходимы для получения из исходного сетевого напряжения постоянных 12, 24, 36 или 48 Вольт. Несмотря на их широкое распространение в быту нередки ситуации, когда обстоятельства вынуждают обходиться без драйвера
В этом случае важно уметь включать светодиоды в 220 В
Полюса светодиода
Полярность светодиода
Чтобы ознакомиться со схемами включения и распайкой диодного элемента, нужно узнать, как выглядит распиновка светодиода. В качестве его графического обозначения используется треугольник, к одному из углов которого примыкает короткая вертикальная полоса – на схеме она называется катодом. Он считается выходным для постоянного тока, втекающего с обратной стороны. Туда подается положительный потенциал от источника питания и поэтому входной контакт называется анодом (по аналогии с электронными лампами).
Выпускаемые промышленностью светодиоды имеют всего два вывода (реже – три или даже четыре). Известны три способа определения их полярности:
- визуальный метод, позволяющий определить анод элемента по характерному выступу на одной из ножек;
- с помощью мультиметра в режиме «Проверка диодов»;
- посредством блока питания с постоянным выходным напряжением.
Для определения полярности вторым способом плюсовой конец измерительного шнура тестера в красной изоляции подсоединяется к одному контактному выводу диода, а черный минусовой – к другому. Если прибор показывает прямое напряжение порядка полвольта, со стороны плюсового конца расположен анод. Если на табло индикации появляется знак бесконечности или «0L», с этого конца располагается катод.
Подробнее о работе диодов
Какое выбрать подключение светодиодов: последовательно или параллельно? Это сильно зависит от условий работы и источника питания, а также системы стабилизации напряжения и тока. Для правильного выбора нужно рассмотреть оба варианта.
Изначально шла речь о вольт-амперной характеристике не просто так, рассмотрим подробно её форму для Led приборов.
Обратите внимание, что в области напряжений ниже чем 2,5В, ток через светодиод протекает крайне малый или вообще не протекает. Преодолев уровень в 2,5 вольта через диод начинает протекать ток и он зажигается на участке от 2,5 до 3 вольт
После этого уровня ток начинает стремительно нарастать.
Для 5 мм диодов белого свечения рабочий ток – 20мА при 3В, а при 3.5 вольта ток будет равняться 80 мА, что в четверо превышает номинал.
Яркость диода хоть и зависит от протекающего через него тока, но при чрезмерно больших значениях LED светится не намного ярче, чем при номинале. Поэтому не стоит экспериментировать с высоким показателями – ваши диоды просто перегорят.
Значения напряжений могут различаться в зависимости от типов и конструкции LED, на это влияет их количество в одном корпусе, цвет, и даже материал который был выбран в качестве основы чипа.
Последовательное подключение
При последовательном соединении через токоограничивающий резистор в одну цепочку собираются несколько светодиодов, причем катод предыдущего припаивается к аноду последующего:
В схеме, по всем светодиодам будет проходить один ток (20мА), а уровень напряжения будет состоять из сумм падения напряжения на каждом. Это означает, используя данную схему подключения, нельзя включить в цепь любое количество светодиодов, т.к. оно ограничено падением напряжения.
Например, в схеме падение напряжения на одном светодиоде составит 3 Вольта. Всего в схеме 3 светодиода. Источник питания 12В. Считаем, 3 Вольта * 3 led = 9 В — падение напряжения.
После несложных расчетов, мы видим, что не сможем включить в схему параллельного подключения более 4 светодиодов (3*4=12В), запитывая их от обычного автомобильного аккумулятора (или другого источника с напряжением 12В).
Если захотим последовательно подключить большее количество LEd, то понадобится источник питания с большим номиналом.
Данная схема довольно часто встречалась в елочных гирляндах, однако из-за одного существенного недостатка в современных светодиодных гирляндах применяют смешанное подключение. Что за недостаток, разберем ниже.
Недостатки последовательного подключения
- При выходе из строя хотя бы одного элемента, не рабочей становится вся схема;
- Для питания большого количества led нужен источник с высоким напряжением.
Параллельное подключение
При параллельном подключении светодиодов, напряжение на них будет одинаковым. А так как не существует двух диодов с абсолютно одинаковыми характеристиками, то будет наблюдаться следующая картина: через какой-то светодиод будет идти ток ниже номинального (и светить он будет так себе), зато через соседний светодиод будет херачить ток в два раза превышающий максимальный и через полчаса он сгорит (а может и быстрее, если повезет).
Очевидно, что такого неравномерного распределения мощностей нужно избегать.
Для того, чтобы существенно сгладить разброс в ТТХ светодиодов, лучше подключать их через ограничительные резисторы. Напряжение блока питания при этом может быть существенно выше прямого напряжения на светодиодах. Как подключать светодиоды к источнику питания показано на схеме:
Проблема такой схемы подключения светодиода в том, что чем больше разница между напряжением блока питания и напряжением на диодах, тем больше бесполезной мощности рассеивается на ограничительных резисторах и тем, соответственно, ниже КПД всей схемы.
Ограничение тока происходит по простой схеме: повышение тока через светодиод приводит к повышению тока и через резистор тоже (т.к. они включены последовательно). На резисторе увеличивается падение напряжения, а на светодиоде, соответственно, уменьшается (т.к. общее напряжение постоянно). Уменьшение напряжения на светодиоде автоматически приводит к снижению тока. Так все и работает.
В общем, сопротивление резисторов рассчитывается по закону Ома. Разберем на конкретном примере. Допустим, у нас есть светодиод с номинальным током 70 мА, рабочее напряжение при таком ток равно 3.6 В (это все берем из даташита к светодиоду). И нам нужно подключить его к 12 вольтам. Значит, нам нужно рассчитать сопротивление резистора:
Получается, что для питания светодиода от 12 вольт нужно подключить его через 1-ваттный резистор на 120 Ом.
Точно таким же образом, можно посчитать, каким должно быть сопротивление резистора под любое напряжение. Например, для подключение светодиода к 5 вольтам сопротивление резистора надо уменьшить до 24 Ом.
Значения резисторов под другие токи можно взять из таблицы (расчет производился для светодиодов с прямым напряжением 3.3 вольта):
Uпит | ILED | ||||||||
---|---|---|---|---|---|---|---|---|---|
5 мА | 10 мА | 20 мА | 30 мА | 50 мА | 70 мА | 100 мА | 200 мА | 300 мА | |
5 вольт | 340 Ом | 170 Ом | 85 Ом | 57 Ом | 34 Ом | 24 Ом | 17 Ом | 8.5 Ом | 5.7 Ом |
12 вольт | 1.74 кОм | 870 Ом | 435 Ом | 290 Ом | 174 Ом | 124 Ом | 87 Ом | 43 Ом | 29 Ом |
24 вольта | 4.14 кОм | 2.07 кОм | 1.06 кОм | 690 Ом | 414 Ом | 296 Ом | 207 Ом | 103 Ом | 69 Ом |
При подключении светодиода к переменному напряжению (например, к сети 220 вольт), можно повысить КПД устройства, взяв вместо балластного резистора (активного сопротивления) неполярный конденсатор (реактивное сопротивление). Подробно и с конкретными примерами мы разбирали этот момент в статье про подключение светодиода к 220 В.