Ядерные батарейки РИТЭГ
Радиоизотопный термоэлектрический генератор (РИТЭГ) представляет собой устройство использующее термопары для преобразования тепла, выделяемое при распаде радиоактивного материала, в электричество. Этот генератор не имеет движущихся частей. РИТЭГ использовался в качестве источника энергии на спутниках, космических аппаратах, удаленных объектах маяков, построенных СССР для Полярного круга.
РИТЭГы, как правило, являются наиболее предпочтительным источником энергии для устройств, которым требуется несколько сотен Ватт мощности. В топливных элементах, батареях или генераторах установленных в местах, где солнечные элементы являются неэффективными
Радиоизотопный термоэлектрический генератор требует соблюдения строгих мер осторожного обращения с радиоизотопами в течение долгого времени после окончания его срока службы
В России насчитывается порядка 1 000 РИТЭГов, которые использовались в основном для источников питания на средствах дальнего действия: маяках, радиомаяках и других специальных радиотехнических средствах. Первым космическим РИТЭГом на полонии-210 стал «Лимон-1» в 1962 году, затем «Орион-1» мощностью 20 Вт. Последняя модификация была установлена на спутниках «Стрела-1» и «Космос-84/90». «Луноходы»-1,2 и «Марс-96» использовали РИТЭГ в системах обогрева.
Плюсы и минусы
Термоэлементы Пельтье отличаются следующими достоинствами:
Пельтье-элемент характеризуется компактностью, простотой и отсутствием в конструкции сложных механических узлов
Главный недостаток систем Пельтье – это низкий КПД – если сравнивать их с теми же классическими холодильниками на фреоне. Проявляется это в первую очередь в более высоком потреблении энергии для достижения ощутимой разницы температур между горячей и холодной сторонами установки.
Выделю также и другие минусы:
Полупроводниковые пластинки Пельтье нашли широкое применение в качестве эффективного термоэлектрического охладителя электронных компьютерных компонентов – в частности процессоров, видеоадаптеров, модулей памяти.
Пельтье-элемент можно приспособить для охлаждения компьютерных компонентов
Термоэлементы Пельтье широко используются как в бытовом оборудовании, так и измерительно-вычислительной технике, а также в области производства электроэнергии. Наибольшую практическую ценность они представляют в виде следующих устройств:
Разберем их особенности более детально.
Мобильные холодильники
Хотя элементы Пельтье не сопоставимы по производительности с компрессорными или абсорбционными хладоустановками, ввиду своих достоинств они все же находят применение в холодильной отрасли. Переносные модели на их основе отличаются такими плюсами:
Пример мобильного холодильника на базе Пельтье-модуля
Как правило, компактными термоэлектрическими холодильниками оснащаются салоны автомобилей.
Электрогенератор
Если одну стороны пластины начать нагревать, а другую, соответственно, охлаждать, между ее контактами появится разность потенциала. При этом величина будет тем выше, чем больше разница температур. Однако даже специализированные модели не способны выдерживать нагрев свыше 300°C, а обычные потребительные – только 150°C. Если случится перегрев, припой расплавится, и элемент разрушится.
Такое условие резко снижает производительность термоэлектрических генераторов тока. Общедоступные модели вырабатывают не более 5-10, редко 12 вольт. Поэтому пользуются спросом такие установки у туристов, геологов, жителей отдаленных районов – тех, у кого просто нет альтернативы использования более мощного источника электротока.
Подогревая одну сторону и охлаждая другую, Пельтье-пластину можно использовать, как низковольтный электрогенератор
Охладитель компьютерных компонентов
Принцип работы элемента Пельтье позволяет использовать его в том числе для охлаждения компьютерных узлов – процессора, модуля памяти и видеоадаптера. Однако здесь возникает несколько сложностей:
Кстати, именно из-за возможности порчи компьютера от конденсата я сразу отказался от использования прямого метода. Благо, что есть гибридный вариант – когда модуль сочетается с воздушным охлаждением (вентилятором). Однако обошлась такая модель гораздо дороже.
Пример собранного кондиционера на базе Пельтье-модуля
Элементы Пельтье применяются также для охлаждения воздуха в системах кондиционирования. Единственное их преимущество – это простота устройства. Недостатков же достаточно, и все они возникают из низкого КПД и проявляются в следующем:
Видео-ролик о том, что такое Пельтье-элемент:
Предлагаемые сегодня на различных площадках для публичного обсуждения самодельные варианты в действительности не отличаются совершенством. Ситуация может измениться только с появлением новых термоэлементов, с более высоким КПД.
Охлаждение воды
Кулеры для питьевой воды на базе термоэлементов применяются достаточно давно. Обуславливается это простотой и надежностью устройства. Однако по сравнению с компрессорными версиями у них также есть некоторые недостатки:
Видео-тестирование Пельтье-элемента на охлаждение и выработку тока:
Кроме того, если помещение постоянно пылится, кулер быстро выйдет из строя – ввиду забивания вентилятора.
В сравнении с системами воздушного охлаждения осушитель на Пельтье вполне реалистичен. Обусловлено это несколькими факторами:
КПД модуля вполне хватает для сушки воздуха в жилом помещении.
Элемент Пельтье в руках домашнего мастера
Нужно сразу оговориться, самостоятельное изготавливание термоэлектрического элемента занятие по меньшей мере бессмысленное и никому не нужное. Если только изготавливающий не является учеником седьмого класса и не закрепляет таким образом, полученные на уроках физики, знания.
Гораздо проще купить новый термоэлектрический элемент в соответствующем магазине. Благо стоят они недорого и недостатка в выборе конкретной модели не наблюдается. А кроме того, что в них нечему ломаться или изнашиваться, любой термоэлемент, снятый со старого компьютера или автомобильного кондиционера, не будет отличаться по своим техническим характеристикам от нового.
Наибольшей популярностью пользуется модель термоэлемента: TEC1-12706. Размеры этого устройства 40 на 40 миллиметров. Состоит он из 127 термопар, соединённых между собою последовательно. Рассчитан на ток в 5 А, при напряжении цепи 12 В. Стоит такой элемент в среднем от 200 до 300 рублей. Но можно найти и за сто, или, вообще, за так, если снять со старого компьютера или какого другого ненужного устройства.
Изготовить с помощью такого элемента можно, как минимум два очень интересных и полезных в хозяйстве устройства.
Как сделать холодильник своими руками
Производство портативных холодильников, в частности, для машин целиком основано на эффекте Пельтье. Для изготовления подобного устройства в домашних условиях понадобиться:
- Термоэлемент марки TEC1-12706. Стоит 200 рублей в ближайшем магазине (специализированном).
- Радиатор и вентилятор. Снимаются с отслужившего своё старого компьютера.
- Контейнер. Любая ненужная ёмкость из пластика, металла или дерева. Снаружи и изнутри такая ёмкость оклеивается теплосберегающими пластинами из пенопласта или пенополистирола.
Термоэлектрический модуль встраивается в крышку контейнера. В этом случае поступление холода будет происходит сверху вниз, что приведёт к равномерному охлаждению ёмкости. Изнутри контейнера, в его крышку с помощью термопасты и крепёжных болтов прикрепляют радиатор.
Для того чтобы увеличить мощность будущего холодильного устройства, можно увеличить количество термоэлементов, до двух-трёх и более. В этом случае модули приклеиваются друг к другу, с соблюдением полярности. Иными словами, горячая сторона нижележащего элемента контактирует с холодной стороной вышележащего.
Снаружи на крышку крепится ещё один радиатор вместе с компьютерным кулером. В месте крепежа радиаторов должна быть хорошая термоизоляция между холодной — внутренней и горячей — внешней сторонами. Необходимо очень аккуратно стягивать верхний и нижний радиаторы крепёжными болтами, чтобы не треснули керамические пластины, располагающихся между ними термоэлементов.
Электричество подключается с помощью блока питания, который можно взять от старого компьютера.
Портативный термоэлектрогенератор
Такая мини-электростанция может очень выручить туриста или охотника, когда в лесу сядут батареи всех электронных гаджетов. Очень романтично в этой ситуации взять несколько сухих щепок и шишек, развести небольшой костерок и с его помощью зарядить разряженные аккумуляторы, а заодно и поесть приготовить. Именно это позволяет сделать портативный термогенератор, построенный на термоэлементе.
Для постройки этого чудо-девайса необходимо наличие портативной походной печки, работающей на любом виде топлива. В крайнем случае сгодится даже небольшая свечка или таблетка сухого спирта.
В печке разводят огонь, а снаружи с помощью термопасты к ней крепится термоэлектрический модуль. Посредством проводов он подключается к преобразователю напряжения.
Величина получаемого тока напрямую будет зависеть от разницы температур между холодной и горячей сторонами термоэлемента. Для эффективной работы необходима разница между холодной и горячей поверхностью как минимум в 100 градусов.
В этом случае необходимо понимать, что максимальная температура ограничена температурой плавления припоя, с помощью которого изготовлен сам модуль. Поэтому для подобных устройств используют специальные термомодули, которые изготавливают с помощью специального тугоплавкого припоя. В обычных модулях температура плавления припоя составляет 150 градусов. В модулях тугоплавких, припой начинает плавиться при температуре 300 градусов.
Термопреобразователь (модуль Пельтье) работает по принципу, обратному действию термопары, — появлению разности температур, когда протекает электрический ток.
Принцип действия модулей
На контакте разнородных проводников происходит выделение или поглощение тепла в зависимости от направления электрического тока. Поток электронов обладает потенциальной и кинетической энергией. Плотность тока в контактирующих проводниках одинакова, а плотности потоков энергии отличаются.
Если энергия, втекающая в контакт, больше энергии, вытекающей из него, это означает, что электроны тормозятся в месте перехода из одной области в другую и разогревают кристаллическую решётку (электрическое поле тормозит их движение). Когда направление тока меняется, происходит обратный процесс ускорения электронов, когда энергия у кристаллической решётки забирается и происходит её охлаждение (направления электрического поля и движения электронов совпадают).
Энергетическая разность зарядов на границе полупроводников самая высокая и в них эффект проявляется наиболее сильно.
Модуль «Пельтье»
Больше всего распространён термоэлектрический модуль (ТЭМ), представляющий собой полупроводники p-, и n-типов, соединённые между собой через медные проводники.
Схема принципа работы модуля
В одном элементе существует 4 перехода между металлом и полупроводниками. При замкнутой цепи поток электронов перемещается от отрицательного полюса АКБ к положительному, последовательно проходя через каждый переход.
Вблизи первого перехода медь – полупроводник p-типа происходит тепловыделение в полупроводниковой зоне, поскольку электроны переходят в состояние с меньшей энергией.
Вблизи следующей границы с металлом в полупроводнике происходит поглощение теплоты, в связи с «высасыванием» электронов из зоны р-проводимости под действием электрического поля.
На третьем переходе электроны попадают в полупроводник типа n, где они обладают большей энергией, чем в металле. При этом происходит поглощение энергии и охлаждение полупроводника около границы перехода.
Последний переход сопровождается обратным процессом тепловыделения в n-полупроводнике из-за перехода электронов в зону с меньшей энергией.
Поскольку нагревающиеся и охлаждающиеся переходы находятся в разных плоскостях, элемент «Пельтье» сверху будет охлаждаться, а снизу нагреваться.
На практике каждый элемент содержит большое количество нагревающихся и охлаждающихся переходов, что приводит к образованию ощутимого температурного перепада, позволяющего создать термоэлектрогенератор.
Как выглядит структура модуля
Элемент «Пельтье» содержит большое количество полупроводниковых параллелепипедов p-, и n-типов, последовательно соединённых между собой перемычками из металла – термоконтактов, другой стороной соприкасающихся с керамической пластиной.
В качестве полупроводников применяется теллурид висмута и германид кремния.
Достоинства и недостатки ТЭМ
К преимуществам термоэлектрического модуля (ТЭМ) относят:
- малые размеры;
- возможность работы, как охладителей, так и нагревателей;
- обратимость процесса при смене полярности, позволяющая поддерживать точное значение температуры;
- отсутствие подвижных элементов, которые обычно изнашиваются.
Недостатки модулей:
- малый КПД (2-3%);
- необходимость создания источника, обеспечивающего температурный перепад;
- значительное потребление электроэнергии;
- высокая стоимость.
Несмотря на недостатки, ТЭМ применяются там, где большие энергозатраты не имеют значения:
- охлаждение чипов, деталей цифровых фотокамер, диодных лазеров, кварцевых генераторов, инфракрасных детекторов;
- использование каскадов ТЭМ, позволяющих добиться низкой температуры;
- создание компактных холодильников, например, для автомобилей;
- термоэлектрогенератор для зарядки мобильных устройств.
Перспективы развития термоэлектрической генерации
Ожидается, что спрос на бытовое потребление ТЭГ вырастет на 14 %. Перспективы развития термоэлектрической генерации опубликовал Market Research Future, издав документ «Глобальный отчет по исследованию рынка термоэлектрических генераторов — прогноз до 2022 года» — анализ рынка, объем, доля, ход, тенденции и прогнозы. Доклад подтверждает перспективу ТЭГ в утилизации автомобильных отходов и системах совместного производства электроэнергии и тепла для бытовых и промышленных объектов.
Географически глобальный рынок термоэлектрических генераторов был разделен на Америку, Европу, Азиатско-Тихоокеанский регион, Индию и Африку. АТР считается самым быстрорастущим сегментом в области внедрения рынка ТЭГ.
Среди этих регионов Америка, по оценкам экспертов, является основным источником доходов на глобальном рынке ТЭГ. Ожидается, что увеличение спроса на экологически чистую энергию повысит спрос на него в Америке.
Европа также будет демонстрировать относительно быстрый рост в течение прогнозируемого периода. Индия и Китай будут наращивать потребление значительными темпами из-за увеличения спроса на транспортные средства, что приведет к росту рынка генераторов.
Компании по производству автомобилей такие, как Volkswagen, Ford, BMW и Volvo в сотрудничестве с NASA, уже приступили к разработке мини-ТЭГ для системы регенерации тепла и экономии топлива в автомобиле.
Генераторный режим элемента Пельтье
Открытие Жака-Шарля Пельтье буквально перевернуло мир, так как устройство может использоваться в качестве универсального генератора тепла и холода. Кроме этих функций, был отмечен еще один немаловажный эффект – генераторный режим. Если теплую сторону устройства нагревать, а холодную охлаждать, то на выводах возникает разница потенциалов, и при замыкании цепи начинает течь ток.
Генератор на основе элемента Пельтье можно сделать своими руками и для этого не потребуется особых навыков. Но стоит понимать, что используемый китайскими разработчиками материал не обладает идеальными характеристиками, позволяющими получать максимум энергии. Доступных термоэлектрических модулей в продаже хватит для:
- зарядки мобильных устройств;
- питания светодиодного освещения;
- изготовления автономного радиоприемника и прочих целей.
По этой теме можно найти массу видео с подробным описанием всех этапов. Поэтому если вы хотите сделать термоэлектрический модуль для получения энергии, то это вполне реально.
Первым делом необходимо заказать необходимое количество элементов Пельтье с учетом их характеристик. Устройство с мощностью 10 Вт на том же e — Bay стоит 15$. И этого вполне достаточно будет для зарядки смартфонов. Далее, необходимо обеспечить эффективное теплоотведение. Для этих целей можно сконструировать систему жидкостного охлаждения с естественной циркуляцией. А горячую сторону нагревать любым источником тепла, в том числе открытым огнем. В результате любой радиолюбитель может сделать сам великолепный термоэлектрический генератор, который можно взять с собой в поход, на рыбалку или дачу.
Один стандартный элемент-ячейка вырабатывает 5 В и 1 Вт мощности, чего вполне достаточно для небольшого освещения. Например, для изготовления фонарика с подогревом от тепла рук. В продаже имеются и готовые элементы с выходным напряжением до 12 В.
Переносная термоэлектрическая печка с генераторным режимом
Сегодня можно найти массу способов, как сделать своими руками достаточно эффективный термоэлектрический генератор на основе элемента Пельтье. Как один из них – портативная печка с топкой из старого компьютерного блока питания. К одной из сторон корпуса прикрепляется сам термоэлектрический элемент Пельтье через термопасту с радиатором внушительных размеров. Такая установка позволит получить тепло в любом удобном месте, приготовить пищу и зарядить телефон.
Краткая теория
Нужно помнить, что элемент Пельтье — это не резистор, его сопротивление нелинейно, так что если мы прикладываем 12В — у нас может не получится 6 ампер (для 6-и амперного элемента) — ток может изменятся в зависимости от температуры (но не слишком сильно). Также при 5В (т.е. меньше номинала) ток будет не 2.5А, а меньше.
Кроме того, количество перенесенного тепла сильно зависит от разницы температуры между поверхностями. При разнице 60-67С — перенос тепла стремится к 0, а при нулевой разнице — 51 Ватт для 12*6 = 72-х Ваттного элемента. Очевидно, уже это не позволяет так просто соединять элементы в серию — нужно чтобы каждый следующий был по размерам меньше предыдущего, иначе самый холодный элемент будет пытаться отдать больше тепла (72Вт), чем элемент следующей ступени может пропустить через себя при желаемой разнице температур (1-51Вт).
Элементы пельтье собираются легкоплавким припоем с температурой плавления 138С — так что если элемент случайно останется без охлаждения и перегреется — то достаточно будет отпаяться одному из 127*2 контактов чтобы выкинуть элемент на свалку. Ну и элементы очень хрупкие — как керамика, так и сами охлаждающие элементы — я нечаянно разодрал 2 элемента «вдоль» из-за присохшей намертво термопасты:
Материалы для создания термопар
Очевидно, обычные металлы для создания мощных систем не годятся. Требуются пары с мощностью от 100 мкВ на 1 градус. В последнем случае достигается высокий КПД. Материалами становятся сплавы висмута, сурьмы, теллурия, кремния, селена. К недостаткам компонентов относятся хрупкость и сравнительно малая температура работы. Низкий КПД добавляет ограничений, но с внедрением нанотехнологий появляется надежда, что привычные рамки окажутся преодолены. Учёные среди перспективных направлений называют разработку принципиально новой полупроводниковой базы с поистине уникальными свойствами, включая точное значение энергетических уровней материалов.
Термоэлектрический преобразователь Пельтье
Элемент Пельтье (ЭП) — это термоэлектрический преобразователь, работающий с использованием одноименного эффекта Пельтье, одного из трех термоэлектрических эффектов (Зеебека и Томсона).
Француз Жан-Шарль Пельтье соединил провода меди и висмута друг с другом и подключил их к батарее, создав таким образом пару соединений двух разнородных металлов. Когда батарея включалась, один из переходов нагревался, а другой охлаждался.
Устройства, основанные на эффекте Пельтье, чрезвычайно надежны, поскольку они не имеют движущихся частей, не нуждаются в техническом обслуживании, не имеют выбросов вредных газов, компактны и имеют возможность двунаправленной работы (нагрев и охлаждение) в зависимости от направления тока.
К сожалению, они малоэффективны, имеют низкий КПД, выделяют довольно много тепла, что требует дополнительной вентиляции и увеличивает стоимость устройства. Такие устройства потребляют довольно много электроэнергии и могут вызвать перегрев или конденсацию. Элементы Пельтье с размерами более 60 мм x 60 мм практически не встречаются.
Элемент пельтье своими руками
Изготовить устройство в домашних условиях практически невозможно, тем более это не имеет особого смысла, учитывая его невысокую рыночную стоимость.
Но большинство умельцев все же предпочитает мастерить элемент пельтье своими руками, ссылаясь на ряд его достоинств:
- Компактность, удобство установки на самодельное электронное плато.
- Отсутствие движущихся деталей, что увеличивает сроки его эксплуатации.
- Возможность соединения нескольких элементов в каскадной схеме для снижения очень больших температур.
Тем не менее, пельтье своими руками имеет определенные недостатки: низкий коэффициент полезного действия (КПД), необходимость подачи высокого тока для получения заметного перепада температуры, сложность отведения тепловой энергии от охлаждаемой поверхности.
Рассмотрим на примере схем, как сделать пельтье своими руками:
- Задействовать его в качестве детали термоэлектрического генератора, согласно рисунку подключения.
- Собрать простой преобразователь на микросхеме ИМС L6920 (рисунок 1).
Рисунок 1. Элемент пельтье своими руками: универсальная схема
Далее стоит следовать простой инструкции, как сделать пельтье своими руками:
- Подать на вход получившегося преобразователя напряжение диапазоном 0.8-5.5В, чтобы иметь на выходе стабильные 5В.
- При использовании устройства обычного типа — поставить лимит температуры нагреваемой стороны в 150 градусов.
- Для калибровки — в качестве источника тепла использовать емкость с кипящей водой, которая точно не нагреется свыше 100 градусов.
Описание технологии и принцип действия
Способ работы термоэлектрического охладителя достаточно прост. Эффект пельтье своими руками основывается на контакте двух проводников тока, обладающих разным уровнем энергии электронов в зоне своей проводимости.
Рисунок 2. Принцип действия элемента
При подаче электротока через такую связь, электрон приобретает высокую энергию, позволяющую ему перейти в более высокоэнергетическую зону проводимости второго полупроводника. Когда эта энергия поглощается, происходит остуживание места охлаждения проводников (рисунок 2).
При протекании процесса в обратном направлении — реакция приводит к нагреванию контактного места и обычному тепловому эффекту.
Посмотрев пельтье своими руками видео, можно сделать определенные выводы о принципе его действия:
- Величина подаваемого тока будет пропорциональной степени охлаждения — если с одной стороны модуля сделать хороший теплоотвод, при использовании радиаторных схем, его холодная сторона обеспечит максимально низкую температуру.
- При смене полярности тока — нагревающая и охлаждающая плоскости меняются метами.
- При контакте объекта с металлической поверхностью, он становится настолько мал, что его нельзя увидеть на фоне омического нагрева, других эффектов теплопроводности, поэтому на практике применяют два полупроводника.
- Благодаря разнообразному количеству термопар — от 1 до 100, можно добиться практически любого показателя холодильных мощностей.
Технические характеристики элемента пельтье
Компонент получил широкое применение в различных холодильных схемах.
Что неудивительно, так как пельтье своими руками имеет следующие технические характеристики:
- Способен достигнуть низких температур, что служит отличным решением для охлаждения электрических приборов и тех оборудования, подвергающегося нагреву.
- Прекрасно выполняет работу обычного куллера, что делает возможным его установку в современные звуковые и акустические системы.
- Абсолютно бесшумен — в процессе работы не издает никаких посторонних и интенсивных звуков.
- Обладает мощной теплоотдачей при сохранении нужной температуры на радиаторе достаточно продолжительное время.
Расшифровка маркировок
Все термомодули имеют специальную маркировку, содержащую несколько букв и цифр. Данное обозначение легко расшифровывается:
- первые две буквы всегда одинаковы – TE, они указывают на то, что это термоэлемент;
- следующая буква обозначает размер: C – стандартный и S – маленький;
- цифра, стоящая перед дефисом, показывает, сколько слоев в данном модуле;
- первые три цифры после дефиса обозначают количество термопар;
- последние две цифры несут информацию о величине номинального тока в Амперах.
Рассмотрим расшифровку на конкретном примере. На фото представлен термоэлемент стандартного размера с одним каскадом (слоем). Устройство имеет 127 термопар. А величина номинального тока равна 6 Амперам.
Немного истории
Жан-Шарль Пельтье был часовщиком. Жил он в девятнадцатом веке, когда электротехника и физика были на подъеме. Все, кто хотя бы немного понимал, как работают физические законы, старались в домашних условиях делать опыты. Пельтье не стал исключением. В 1834 году он решил провести один опыт, поместив каплю воды между двумя электродами: один был изготовлен из сурьмы, второй из висмута. После чего через электроды пропустил электрический ток.
Каково его было изумления, когда вода превратилась в лед. Ведь то, что под действием электрического тока любые материалы нагревались, было известно. Но чтобы произошел обратный эффект, это была новость. Французский часовщик так и не понял, что изобрел что-то новое, которое оказалось на границе двух областей науки – электричества и термодинамики. В то время для него произошло просто волшебство.
Правда, проблемы охлаждения в те времена мало кого интересовали, поэтому эффект Пельтье так и остался невостребованным. И только через два века, когда в промышленности и быту стали использовать электронные устройства, для которых требовались миниатюрные приборы охлаждения, о Пельтье и его эффекте вспомнили.
Работа с элементами Пельтье
Подключение термоэлектрического модуля
Подключение модуля на элементах Пельтье не представляет собой никаких сложностей, так как для этого на два выходящих конца достаточно подать U DC с источника питания ИП
При этом стоит обратить внимание на номинальное напряжение, указанное в техпаспорте
На красный конец провода подается «+», на черный – «-».
Как уже указывалось выше, при ошибочном подключении начинает нагреваться другая поверхность.
Проверка элемента Пельтье
С учетом того, что термоэлектрический модуль должен нагреваться с одной стороны и охлаждаться с другой, самый простой вариант протестировать данное устройство – подать на него необходимое напряжение с ИП. При этом, одна сторона у него станет теплой, а вторая – холодной.
При отсутствии ИП, можно провести проверку подручными средствами, а именно:
- Взять обычный мультиметр и подключить его клеммы к выводам термоэлектрического модуля.
- Зажечь пламя от спички или зажигалки и поднести к одной из пластин, прогрев ее.
- Так как согласно закону Зеебека, разница температур вызовет протекание I, это отразится на экране прибора.
Важно! Шкала показаний мультиметра должна быть выставлена на замер показаний по току
Сборка элемента Пельтье собственными силами
Для тех, кто желает изготовить элемент Пельтье дома, своими руками, стоит отметить, что это практически невозможно. Подобные термоэлектрические модули легко можно приобрести в соответствующих магазинах радиодеталей, а их стоимость настолько невысока, что собирать его вручную становится просто невыгодным.
Однако некоторые из подобных устройств на основе элемента Пельтье можно попробовать собрать самостоятельно. К примеру, портативный генератор на термоэлектрическом модуле сможет пригодиться в походах, поездках или долгих путешествиях.
Для сборки генератора понадобится элемент ИМС L6920:
Как видно из указанной схемы при входном U от 0,8 до 5,5В на выходных клеммах будет присутствовать U=5В. При использовании термоэлектрического модуля, можно ограничить его Т посредством применения походного котелка с кипятком, за счет чего по закону Зеебека на выходе пойдет ток, что и обеспечит имеющееся напряжение в 5 В.
Элемент Пельтье своими руками посредством диодов
Теоретически изготовить подобный элемент Пельтье на диодах вполне возможно.
С учетом того, что с физической точки зрения работа термоэлектрического модуля заключается в разности проводимостей материалов p-n и n-p, то можно использовать обычные диоды, которые таковыми и являются. Однако, если данная схема будет работать при нагреве, то понизить температуру посредством диодов не представляется возможным.
Диоды можно использовать как датчик температуры, причем при включении их в цепь в обратном направлении переход откроется, в результате чего I также пойдет в обратном направлении. Однако работать в качестве генератора данная схема не сможет.
Получаем термоэлектричество своими руками
Вот мы с вами и разобрали, как сделать термоэлектрический генератор своими руками, теперь давайте разберем основные способы получения электричества с такого устройства.
Рекомендуем посмотреть вот такое видео, здесь все докладной рассказывается.
Теперь расскажем еще несколько слов о принципе работы такого устройства, чтобы он давал хорошее напряжения разница в температуре должна составлять 100 градусов. Если заметили, что охлаждающая сторона слишком нагрелась делайте все, чтобы ее остудить. Можно использовать воду или другие средства, которые вы видите о себе под рукой.
Похожая статья: Делаем самодельный двигатель из батарейки, проволоки и магнита.
Эффект Пельтье
Эффект Пельтье называют зеркальным отражением термоэлектричества. В этом случае ток переносит тепло с первого конца термопары на второй. Причём с изменением направления и нагреваемая сторона обращается на противоположную. Эффект открыт в 1834 году, получив неправильное толкование. Лишь 4 года спустя «соотечественник» Ленц сумел заморозить и испарить каплю воды при помощи термопары. В каждом случае ток показывал собственное направление.
Эффект объясняется просто в современной физике. Допустим, имеется два разнородных полупроводника с одинаковым типом проводимости. Электроны в каждом обретают разное значение энергии, причём уровни в обоих случаях расположены близко. Теперь представим, что электрический ток начал переносить заряды из одной среды в другую. Что произойдёт? Электроны с повышенной энергией, оказавшись в среде пониженных уровней, отдадут лишнее количество кристаллической решётке, произведя нагрев. Напротив, если энергии недостаточно, она передастся от кристаллической решётки, что вызовет охлаждение спая.
Эффект Пельтье
Если тип проводимости полупроводников в термопаре неодинаков, эффект объясняется иначе. Электрон, попадая в p-материал занимает на энергетическом уровне место дырки (положительного носителя заряда). В результате теряет кинетическую энергию движения и разницу между нынешним и прошлым состоянием. Высвобожденное количество идёт на образование свободных носителей по обе стороны p-n-перехода. Остаток сообщается кристаллической решётке, от которой идёт нагрев. Если энергия в начальный момент меньше, начнётся охлаждения спая. Рекомбинирующие носители восполняются источником питания.
Количество теплоты, выделенное или поглощённое, пропорционально прошедшему через проводник заряду. Коэффициент в формуле линейной зависимости носит имя Пельтье. Аналогичная величина введена и для термоэлектричества, носит имя Зеебека. Из формулы следует, что количество выделившейся теплоты, в отличие от эффекта Джоуля-Ленца, пропорционально первой степени электрического тока (определяющего перенесённый заряд).