Для чего нужен дроссель для люминесцентных ламп?

Как сделать дроссель на лампу ДРЛ 250

Так как лампы высокого давления ДРЛ 250 имеют довольно долгий срок службы и высокую экономичность по сравнению с лампами накаливания, их с успехом применяют для освещения дачных участков, двора частного дома, а иногда даже гаражей внутри.

Они годами доказали свою надежность, качество освещения, и все это за небольшую сумму. Приобрести лампу ДРЛ 250 не составит особого труда. Она есть в продаже как специализированных магазинах, так и на рынках.

Проблему может составить дроссель, который входит в схему питания лампы. Так как он состоит из медной проволоки, стоимость его, даже бывшего в употреблении довольно высока. Поэтому в этой статье будет описано — как сделать дроссель для этой лампы из других часто встречающихся материалов. Например, из трех дросселей распространенных некогда светильников дневного света. Такие дроссели применялись в светильниках на лампы ЛД 40, соответственно дроссель у них был 40 Ватт. Также светильники на лампы ЛД 80 в которых дросселя рассчитаны на 80 Ватт. Для замены дросселя под лампу ДРЛ 250 ватт, вам понадобится два дросселя на 80 Ватт и один на 40 Ватт. Схемы их соединения можно видеть на рисунке.

Здесь видно, что все дроссели соединяются в параллель, то есть соединенные в параллель дроссели образуют один общий балласт.

Один провод, идущий от розетки 220 соединяется с одним концом дросселей, а другой провод в розетке 220 идет прямо на лампу. Провод с выхода дросселей идет на второй контакт лампы. Вариант монтажа дросселей на корпусе светильника можно увидеть на фотографиях.

Здесь также видно как подключаются провода

Очень важно позаботиться, чтобы контакты на клеммах дросселей имели хорошее соединение, иначе они будут искрить и нагреваться. На фото можно видеть, как работает такой дроссель и запускает лампу ДРЛ 250

Такая конструкция была сделана и испытана, показавши хорошие результаты. Помимо монтажа дросселей на светильники, можно сделать отдельный ящик в котором они будут располагаться, а провода с него вывести на лампу. Такой вариант сборки обойдется гораздо дешевле покупки специального дросселя. Хотелось бы напомнить, что по правилам монтажа ламп ДРЛ, они должны находиться на высоте не менее трех метров. Так как считается, что они излучают достаточно много ультрафиолета, а это нежелательно для человеческой кожи. На этом все. Пробуйте, и у вас получиться.

https://l800.ru/zapusk-lamp-drl-bez-drosselja.html https://proosveschenie.ru/proizvodstvennye-pomeshheniya/pravilnoe-podklyuchenie-lampy-drl.html https://sdelaysam-svoimirukami.ru/2526-kak-sdelat-drossel-na-lampu-drl-250.html

Принцип действия

Как уже говорилось, схема питания лампы дневного света принципиально отличается от подключения приборов накаливания. Дело в том, что электроэнергия здесь преобразовывается в световой поток посредством протекания тока сквозь скопление паров ртути, которые смешаны с инертными газами внутри колбы. Происходит пробой этого газа при помощи высокого напряжения, поступающего на электроды.

Как это происходит, можно понять на примере схемы.

Составляющие люминесцентного светильника

На ней можно увидеть:

  1. пускорегулирующий аппарат (стабилизатор);
  2. трубка лампы, включающая в себя электроды, газ и люминофор;
  3. слой люминофора;
  4. стартерные контакты;
  5. стартерные электроды;
  6. цилиндр корпуса стартера;
  7. пластинка из биметалла;
  8. наполнение колбы из инертного газа;
  9. нити накаливания;
  10. излучение ультрафиолета;
  11. пробой.

Слой люминофора наносится на внутреннюю стенку лампы для того, чтобы преобразовать ультрафиолет, который невидим человеку, в освещение, принимаемое обычным зрением. При изменении состава этого слоя можно изменить оттенок цвета осветительного прибора.

Технические характеристики дросселей

Фото Артикул Наименование Напряжение, В Упаковка

503875.58 L 7/9/11.851 230V/50HZ 85x41x28 VS — дроссель 2250/п 230V 10
12682600 L 26.826H 230V 0,325А 155x41x26 Schwabe Hellas — дроссель 230V 10
534142.12 L 4/6/8-265H 220V VS — дроссель 220V 10

13283100 L 32.830H 0.45A 230V 155x41x26 Schwabe Hellas — дроссель 230V 10

10707134 NAHJ 70.713.4 230V 1,00A 112x66x52 SCHWABE HELLAS -дроссель 230V кор. 6
11256134 Q 125.613.4 230V 1,15A 112x66x52 SCHWABE HELLAS — дроссель 230V 1

12282200 L 22.890H 0.4A 230V 155x41x26 Schwabe Hellas — дроссель 230V 10

534487.11 NAHJ 1000.089 220V 10,3A 203x102x92 метгал-натрий -дроссель Vossloh Schwabe 105/палл 220V 1

12506146 Q 250.614.6 220V 2,13A 145x66x52 SCHWABE HELLAS — дроссель 220V 1
13083000 L 30.832H 0.36A 230V 155x41x26 Schwabe Hellas — дроссель 230V 10
20041210 CD-Z 400M 35-400W 230V 50Hz d35x87 FOTON металл+гайка -ИЗУ 230V 30
20040202 CD-Z 1000 600-1000W 230V 4-5kV 1 метр FOTON металл+гайка — ИЗУ 230V 30
x02564752 FOTON 1000W 230V 10,3А 248x102x92 МГ-натрий -дроссель 230V 1
3545454646 FL-01 2000W 10,3A 400x265x188 IP65 FOTON LIGHTING- моноблок 230V 1
434641 FL-02 BOX 70W 250×85 IP65 FOTON LIGHTING- пустой корпус 230V 1
246466 FL-11 GEAR BOX 70W 224x170x105 IP65 FOTON LIGHTING-моноблок 230V 10
246467 FL-11 GEAR BOX 150W 224x170x105 IP65 FOTON LIGHTING-моноблок 230V 10
20110071 FL-19 GEAR BOX 70 FOTON LIGHTING (моноблок) (225Х125Х75) 230V 8
556444 FL-20 GEAR BOX 2x18w IP20 FOTON LIGHTING моноблок 225x125x75 230V 8
511031 GBP-23 35W зеленый FOTON LIGHTING моноблок 215x82x73 230V 10

Как работает лампа дневного света

Принцип действия ламп дневного света основан на ультрафиолетовом излучении, воздействующем на люминофорное покрытие стеклянной колбы. Установлено, что оно возникает под влиянием электрического тока на ртутные пары, расположенные в среде инертного газа и разогретые до установленной температуры. Попадая на люминофор, ультрафиолетовое излучение переходит в другой диапазон, становится видимым, создавая основной световой поток и позволяя зажечь прибор освещения.

Для того чтобы обеспечить подобные физические и химические реакции, конструкция типового линейного люминесцентного светильника выполнена в виде стеклянной колбы цилиндрической формы. Ее внутренняя поверхность покрыта люминофором, а все пространство заполнено аргоном или другими видами инертных газов. Здесь же находится и небольшое количество ртути, которая начинает испаряться под действием электронов. Источником их эмиссии служат вольфрамовые электроды, покрытые активными веществами. Однако, ртуть не может начать испаряться под влиянием одного лишь сетевого напряжения, которого недостаточно для этих целей. Работа лампы может начаться только при участии специальных пускорегулирующих устройств. Их основной функцией является создание кратковременного скачка напряжения, обеспечивающего начало запуска и последующего свечения. Далее эти устройства ограничивают рабочий ток, пресекая его неконтролируемый рост. Пускорегулирующая аппаратура разделяется на электромагнитную и электронную, каждую из которых требуется установить по собственной схеме.

Проверка ламп дневного света

Проверить целостность вольфрамовой нити очень просто, нужно взять обычный тестер, измеряющий сопротивление проводника, после чего надо прикоснуться щупами к выводным концам данной лампы. Если прибор покажет, например, сопротивление, составляющее 9.9 Ом, тогда это будет значить, что нить цела. Если же во время проверки пары электродов тестер покажет полный ноль, данная сторона имеет обрыв, поэтому включение ламп дневного света не совершиться.

Спираль может оборваться из-за того, что на протяжении времени ее использования нить истончается, поэтому постепенно возрастает напряжение, которое сквозь нее проходит. Благодаря тому, что напряжение постоянно возрастает, стартер выходит из строя, что можно увидеть по характерному «морганию» данных ламп. После того, как будут заменены сгоревшие лампы и стартеры, схема будет работать без наладок.

Если же во время включения ламп слышны посторонние звуки либо же ощутим запах гари, тогда необходимо сразу же обесточить светильник, проверив работоспособность его элементов. Может быть, что на самих клеммных соединениях появилась слабина и подключение проводов прогревается. Кроме этого, в случае некачественного изготовления дросселя, может случиться витковое замыкание обмоток, что приведет к выходу ламп из строя.

Как подключить люминесцентную лампу?

Подключение лампы дневного света является очень простым процессом, схема его предназначается для розжига только одной лампы. Чтобы подключить пару ламп дневного света, нужно слегка изменить схему, действуя при этом по единому принципу последовательного соединения элементов.

В подобном случае необходимо пользоваться парой стартеров, по одному на лампу. Во время подключения пары ламп к единому дросселю, необходимо обязательно учитывать его номинальную мощность, указанную на корпусе. К примеру, если его мощность составляет 40 Вт, тогда есть возможность подключить к нему пару одинаковых ламп, максимальная нагрузка которых равна 20 Вт.

Кроме того, бывает подключение лампы дневного света, в котором не используются стартеры. Благодаря применению специализированных электронных балластных устройств, лампа разживается мгновенно, при этом не «моргая» стартерными схемами управления.

Подключение люминесцентной лампы к электронному балласту

Подключать лампу к электронным балластам очень просто, ведь на их корпусе есть детальная информация, а также схематически показано соединение контактов лампы с соответственными клеммами. Однако, чтобы было более понятно, как же подключить лампу дневного света к данному устройству, можно просто тщательно изучить схему.

Главное преимущество данного подключения – отсутствие дополнительных элементов, которые нужны для стартерных схем, управляющих лампами. Кроме того с упрощением схемы значительно увеличивается надежность работы всего светильника, ведь исключаются дополнительные соединения со стартерами, которые достаточно ненадежные устройства.

В основном, все провода, которые нужны для сборки схемы, идут в комплекте с самим электронным балластным устройством, поэтому отпадает необходимость изобретать велосипед, что-нибудь придумывать и нести при этом дополнительные расходы на приобретение недостающих элементов. В этом видео-ролике Вы сможете Более подробно ознакомиться с принципами работы и подключения люминесцентных ламп:

Навигация по записям

Электромагнитный или электронный балласт для люминесцентных ламп нужен для нормальной работы этого источника освещения. Главная задача пускорегулирующего аппарата – преобразовывать постоянное напряжение в переменное. У каждого из них есть свои плюсы и минусы.

Принцип работы люминесцентного светильника

Особенность работы люминесцентных светильников заключается в том, что их нельзя напрямую подключать в сеть питания. Сопротивление между электродами в холодном состоянии большое, и величина тока, протекающего между ними, недостаточна для возникновения разряда. Для зажигания требуется импульс высокого напряжения.

Лампа с зажженным разрядом характеризуется низким сопротивлением, которое имеет реактивную характеристику. Для компенсации реактивной составляющей и ограничения протекающего тока последовательно с люминесцентным источником света включается дроссель (балласт).

Многим непонятно, для чего нужен стартер в люминесцентных лампах. Дроссель, включенный в цепь питания совместно со стартером, формирует импульс высокого напряжения для запуска разряда между электродами. Так получается потому, что при размыкании контактов стартера на выводах дросселя формируется импульс ЭДС самоиндукции величиной до 1кВ.

Watch this video on YouTube

Для чего нужен дроссель

Использование дросселя для люминесцентных ламп (балласта) в цепях питания необходимо по двум причинам:

  • формирование напряжения запуска;
  • ограничение тока через электроды.

Принцип работы дросселя основан на реактивном сопротивлении катушки индуктивности, которой является дроссель. Индуктивное сопротивление вносит сдвиг фаз между напряжением и током, равный 90º.

Из того, что ограничивающей ток величиной, является индуктивное сопротивление, следует, что дроссели, предназначенные для ламп одной мощности, нельзя использовать для подключения более или менее мощных устройств.

В некоторых пределах возможны допуски. Так, ранее отечественная промышленность выпускала люминесцентные светильники с мощностью 40 Вт. Дроссель 36W для люминесцентных ламп современного производства можно без опасений использовать в цепях питания устаревших светильников и наоборот.

Отличия дросселя от ЭПРА

Дроссельная схема включения люминесцентных источников освещения отличается простотой и высокой надежностью. Исключение составляет регулярная замена стартеров, поскольку в их состав входит группа размыкающих контактов для формирования импульсов запуска.

В то же время схема имеет существенные недостатки, которые заставили искать новые решения включения ламп:

  • длительное время запуска, которое увеличивается по мере износа лампы или снижения напряжения питания;
  • большие искажения формы напряжения питающей сети (cosф<0.5);
  • мерцание свечения с удвоенной частотой питающей сети из-за малой инерционности светимости газового разряда;
  • большие массо-габаритные характеристики;
  • низкочастотный гул из-за вибрации пластин магнитной системы дросселя;
  • низкая надежность запуска при отрицательных температурах.

Проверка дросселя ламп дневного света затрудняется тем, что приборы для определения короткозамкнутых витков распространены мало, а при помощи стандартных приборов можно только констатировать факт наличия или отсутствия обрыва.

Для устранения указанных недостатков разработаны схемы электронной пуско-регулирующей аппаратуры (ЭПРА). Работа электронных схем основана на другом принципе формирования высокого напряжения запуска и поддержания горения.

Watch this video on YouTube

Высоковольтный импульс генерируется электронными компонентами, а для поддержки разряда используется высокочастотное напряжение (25-100 кГц). Работа ЭПРА может осуществляться в двух режимах:

  • с предварительным подогревом электродов;
  • с холодным запуском.

В первом режиме на электроды подается низкое напряжения в течение 0.5-1 секунды для первоначального нагрева. По истечении времени подается высоковольтный импульс, из-за которого происходит зажигание разряда между электродами. Данный режим технически реализуется сложнее, но увеличивает срок службы ламп.

Режим холодного запуска отличается тем, что напряжение запуска подается на непрогретые электроды, вызывая быстрое включение. Такой способ запуска не рекомендован для частого использования, поскольку сильно сокращает срок работы, но его можно использовать даже с лампами с неисправными электродами (с перегоревшими нитями накала).

Схемы с электронным дросселем имеют такие преимущества:

полное отсутствие мерцания; широкий температурный диапазон использования; малые искажения формы напряжения сети; отсутствие акустических шумов; увеличение срока службы источников освещения; малые габариты и вес, возможность миниатюрного исполнения; возможность диммирования — изменения яркости путем управления скважности импульсов питания электродов

Как заменить

В последнее время очень часто такая операция вызвана необходимостью замены магнитных дросселей на электронные. Этот процесс довольно прост и понятен, но также должен выполнятся специалистами электриками. Процесс замены балласта с магнитного на электронный:

  1. Отключают питание на прибор.
  2. Открывают светильник, снимают колбу и балластный кожух.
  3. С помощью кусачек обрезают силовые (коричневые) и нейтральные (синие) провода, идущие в прибор.
  4. Закрывают провода проволочными гайками.
  5. Кусачками, отрезают провода и снимают магнитный балласт.
  6. Присоединяют электронный балласт в место, где был магнитный.
  7. Подключают провода питания и нейтрали к соответствующим балластным проводам.
  8. Закрепляют провода проволочными гайками.
  9. Возвращают колбу лампы и дроссельный кожух обратно.
  10. Включают питание на лампу.

Правильно установленные и функционирующие электрические осветительные балласты должны долго проработать, обеспечивая безопасный, хорошо регулируемый ток для ламп освещения без раздражающего мерцания и гудения.


Схема дневного освещения

Дроссель, хоть и выполняет сегодня важную роль в установке ЛЛ, но уже не является незаменимым, его место занял электронный пускорегулирующий аппарат ЭПРА (электронный балласт). Собственникам помещений,планирующим устанавливать такое освещение нужно учитывать, что 1 июля 2021 года в России запрещено применение трубчатых ЛЛ, а также ртутных ламп, а с начала 2021 года будут запрещены люминесцентные и натриевые светильники.

Как проверить дроссель с мультиметром и без него. Все причины неисправности ПРА и ЭПРА.

Лампы дневного света, несмотря на популяризацию светодиодного освещения, до сих пор остаются одним из распространенных видов осветительных приборов в домах, гаражах и производственных помещениях.

Когда такой светильник перестает гореть, первым делом грешат на саму лампочку или стартер. А если они не виноваты, как проверить другой не менее важный элемент – дроссель?

Во-первых, определимся, что же такое дроссель или как его еще называют балласт. По сути, это обыкновенная катушка индуктивности с ферромагнитным сердечником.

Вот так она выглядит в разрезе.

В схемах балласт нужен для трех функций:

контроля тока, чтобы он не превышал номинала

образование за счет индуктивности кратковременного импульса повышенного напряжения

сглаживания возможных пульсаций в сети 220В

Подключается он последовательно, а параллельно ему монтируется стартер.

Стартер необходим для поджига лампы.

Напряжение, которое подводится к спиральным электродам на концах лампы, изначально недостаточно для ее розжига. И тут на помощь приходит дроссель и стартер.

После появления напряжения в стартере, внутри образуется разряд, который нагревает биметаллический электрод.

Из-за нагрева форма электрода меняется и происходит его замыкание.

В результате чего, резко возрастает ток и электроды раскаляются. Ток ограничивается только сопротивлением самого дросселя.

У стартера контакты постепенно остывают и размыкаются. При размыкании, благодаря дросселю, в лампе возникает эффект самоиндукции, с образованием высоковольтного импульса и электрического разряда напряжением до 1000В.

От этого разряда создается ультрафиолетовое свечение ртутных паров, которыми заполнена колба. Оно оказывает воздействие на люминофор, и только благодаря ему, мы и можем различать свет в привычном для нас спектре.

Если для кого-то это объяснение слишком заумно, то вот одно из самых простых и понятных видео, объясняющих на доступном всем языке, как же работает лампа ЛДС.

Получается, что сам процесс включения люминесцентной лампы дневного света довольно длителен и занимает 5 этапов:

подача 220В из розетки и замыкание контактов стартера

подача высоковольтного импульса от дросселя

образование тлеющего разряда в колбе и поддержка его внешним напряжением 220В + шунтирование стартера и исключение его из схемы

Как видно из процесса запуска, при неисправности ламп, виноватыми могут быть три элемента:

При этом, чаще всего повреждаются лампочки и стартера – из-за перегоревших вольфрамовых нитей и конденсаторов.

Узнать об этом проще всего – заменив стартер или лампочку. Тем более, что стоят они копейки. А вот как быстро узнать о неисправности дросселя?

Без специальных измерительных приборов о неисправности ПРА может свидетельствовать эффект огненной змейки. Вы визуально сможете наблюдать ее внутри лампы.

О чем это говорит? А говорит это в первую очередь о том, что есть превышение максимально допустимого тока. Из-за чего заряд потерял стабильность.

Также может наблюдаться неустойчивое свечение или мерцание лампы. При поломке балласта, светильник не загорится с первого раза.

В результате, стартер будет постоянно запускаться и отключаться, запускаться и отключаться. От таких частых пусков, возле спиралей на концах лампы появляются почернения.

Еще один способ проверки без измерительных приборов и мультиметра – контрольная лампочка. Мощность ее должна быть примерно такой же, как и мощность самого дросселя.

Подключаете ее последовательно по следующей схеме с ПРА и смотрите как она светит.

если не горит совсем – в балласте обрыв, дроссель неисправен

горит ярко – в балласте межвитковое короткое замыкание

моргает или светит в половину накала – дроссель исправен

Но чтобы точно убедиться в повреждении дросселя, все таки лучше воспользоваться мультиметром и провести замеры.

Повреждение дросселя может быть пяти видов:

замыкание витков в одной обмотке

Какой-то из проводов, которым намотан дроссель может просто оборваться. Выявляется это легко.

Переводите мультиметр в режим измерения сопротивления и касаетесь щупами выводов дросселя. Если высвечиваются показания ”бесконечность” это и свидетельствует об обрыве.

Проверка работоспособности системы

Каждый заново созданный продукт (и любое техническое изделие таковым является) после изготовления следует протестировать. Это комплексный процесс, состоящий из проверок на безопасность, функционирование, полноту возможностей, соответствие техническим стандартам и нормам.

Функциональное тестирование даёт полную информацию о состоянии проверяемого продукта на текущий момент, а также подробное описание недоработок и перспективы их устранения. В ходе анализа учитывается специфика продукта и требования к нему.

Люминесцентные лампы в своём составе имеют вольфрамовую нить накаливания. Для повышения срока её живучести нить покрывается слоем активного щелочного металла. Но при частых и многочисленных включениях и выключениях защитное покрытие осыпается и нить перегорает. Проверить, цела ли нить накала, легко можно мультиметром. При нарушении герметичности баллона в лампу попадает воздух, и такую лампу следует заменять.

Неисправность дросселя обнаруживается по его гудению, мерцанию лампы, появлению «змеек» внутри лампы, слишком короткой работе после включения. Сгоревший дроссель пахнет горелым, он ремонту не подлежит, надо только менять

Подключение с помощью современного электронного балласта

Устройства ЭмПРА имели ряд недостатков, что сильно ограничивало сферу применения люминесцентных источников света:

  • Долгий запуск светильников (достигал 3-х секунд, а выход на полную мощность мог достигать нескольких минут);
  • Проявление стробоскопического эффекта, что очень опасно для производства. При определённой частоте мерцания, вращающиеся механизмы могут показаться остановленными;
  • Неработоспособность при низких температурах. Например, в подвале или гараже использовать в холодное время года люминесцентные источники было невозможно;
  • Шумная работа — дроссель часто гудел, как при запуске, так и во время работы светильника;
  • Установка ЭмПРА в люминесцентных светильниках усложняет схему подключения, так как такой балласт состоит из нескольких раздельных блоков.

Современный тип ПРА – электронный. Это моноблок с печатной платой, на которой собрана вся схема для разогрева и запуска с помощью электронных компонентов. Так как вся схема собрана в едином корпусе, то не нужно собирать схему из дросселей и стартеров. Источники света подключаются только к выведенным клеммам на выходе блока.

ЭПРА работает на повышенной частоте, от 60 до 140 кГц, что исключает появление мерцания и стробоскопического эффекта. Запуск происходит быстро, без дополнительных вспышек и звуковых эффектов.

Электронный балласт

Современные компоненты позволяют изготавливать электронные ПРА более экономичными и компактными, что позволяет встраивать ЭПРА в корпус осветительного прибора. А также появилась возможность изготавливать малогабаритные люминесцентные лампы, например, с цоколем Е27, часто называемые энергосберегающими. Колба, у таких источников света часто изготовлена в виде спирали, что позволяет сделать её большой длины при меньших габаритах. Подключаются такие источники света к сети простым вкручиванием в патрон.

Компактная люминесцентная лампа

Можно выделить следующие достоинства ЭПРА:

  • Быстрый запуск в работу;
  • Больше экономичность, по сравнению со старыми типами электромагнитных балластов;
  • Отсутствие шума при запуске и работе;
  • Некоторые модели работают также при отрицательных температурах;
  • Высокая отказоустойчивость;
  • Отсутствие сильного нагрева;
  • Стабильный световой поток.

Принцип работы ЭПРА

После подачи питания, напряжение выпрямляется диодным мостом и конденсатором и поступает на высокочастотный генератор. Импульсы высокой частоты поступают на электроды источника света. При высокой частоте интенсивность нагрева электродов не так интенсивна, но со временем частота начинает падать. При этом напряжение в источнике света увеличивается, контур питания близится к резонансу, интенсивность нагрева растёт.

В определённый момент, происходит пробой газовой среды, и лампа начинает светиться. Устройство ЭПРА таково, что если, со временем эксплуатации, источнику света потребуется большее напряжение для пробоя и начала работы, то он сможет его обеспечить, из-за особенностей своей работы.

Особенности схемы

Так как электронный балласт выполнен в едином корпусе с выведенными наружу клеммниками, то подключить его не составляет особого труда. Не требуется сборка схемы с дросселем и стартером. Тем более, что на корпусе схема соединения с источниками света чаще всего напечатана. Если же её нет, то она обязательно будет в инструкции к устройству.

На входные клеммы ЭПРА подключаются фаза, ноль и заземление от внешней сети. А на выходе два двойных клеммника, куда подключается одна лампа. Типовая схема подключения к одному источнику света выглядит примерно так:

Схема подключения люминесцентной лампы к ЭПРА

Но, так как конструкция балласта может отличаться, а также он может быть предназначен для подключения нескольких источников света, то лучше внимательно рассмотреть схему в инструкции для каждого конкретного устройства.

Схема подключения ЭПРА на две лампы

Также различные схемы подключения люминесцентных источников света, для понимания, можно посмотреть в видео:

Как подключить люминесцентную лампу

Классификация и разновидности дросселей.

В разных схемах дроссели могут выполнять разные функции. Допустим в схеме осветителя на люминесцентной лампе у него одни задачи, в электронике при помощи катушки можно, допустим, произвести развязку разночастотных электронных схем, или использовать в LC-фильтре. Это и определяет классификацию.

 Вид дросселя зависит от его назначения в каждой конкретной схеме. Это могут быть фильтрующие, сглаживающие, сетевые, моторные, особого назначения. В любом случае, их объединяет общее свойство: высокое сопротивление по переменному току и низкое – по постоянному. Этим можно добиться снижения электромагнитных помех и наводок. В однофазных цепях катушку индуктивности можно применить в качестве ограничителя (предохранителя) от бросков напряжения. Функцию сглаживания дроссель выполняет в фильтрах выпрямителей. Обычно применяется LC-фильтр.

Ремонт светильников с перегоревшими дросселями

Светильники с перегоревшими электромагнитными дросселями можно отремонтировать самостоятельно, заменив отказавший элемент другим, например, применяемым в иных вариантах световой аппаратуры.

Например, в настольных светильниках с ЭмПРА можно использовать плату (с элементами, обеспечивающими горение лампы) от энергосберегающей лампы.

Для этого нужно найти экономичную перегоревшую лампочку (той же мощности, что и у ремонтируемой) с сохранившейся в хорошем состоянии электронной «начинкой».

Перегоревшая энергосберегающая лампа с электронной начинкой

Далее необходимо отделить от лампы цоколь вместе с платой и извлечь саму плату. При этом запомнить, где находятся выводы на высоковольтный конденсатор, на лампу и на входное напряжение питания 220 В.

Отделение платы

Все штырьки, расположенные на плате, и конденсатор (на картинке он зеленого цвета) необходимо выпаять.

Он пойдет в нижнюю, пластмассовую часть цоколя настольной лампы.

Снимаем нижнюю пластину

Для этого снимаем нижнюю пластину в месте, отмеченном на рисунке, и вытаскиваем из вскрытого кожуха находящиеся в нем детали, которые были соединены при помощи латунных трубок с электродами лампы.

Вместо удаленных нами элементов к проводам, идущим на электроды, присоединяем конденсатор, выпаянный с платы, и помещаем во вскрытый кожух. После этого отделенную нами пластину возвращаем на место и приклеиваем клеем.

Присоединяем конденсаторПомещаем во вскрытый кожух

Далее создаем точки соединения штырьковых выводов электродов с проводами, выходящими с преобразующей электронной платы, снятой с энергосберегающей лампы.

Создаем точки соединения штырьковых выводов электродов с проводами

Для этого провода с коммутирующего разъема припаиваем к контактам платы на выходе (на рисунке они находятся слева).

Плату помещаем в защитный корпус.

Зачем это нужно сделать?

Так как элементы на плате находятся под высоким напряжением, в целях электробезопасности нужно закрыть к ним доступ.

Через провода, находящиеся справа на рисунке, в схему подается входное напряжение от сети 220 В.

Для подключения используем вилку и розетку.

Включенная лампа

Включаем созданную конструкцию в сеть. Лампа загорается, светильник работает.

Такие и многие другие самоделки позволяют экономить деньги на покупке товаров, взамен вышедших из строя. При наличии некоторого объема знаний и опыта всегда есть возможность сделать нужные изменения и ремонт светильника своими руками.

Основные функции

Классическая схема включения люминесцентных ламп


Возможно вам понравится одна из вариаций рассмотренной схемы. Использование электронного ПРА позволяет избавиться от большинства из перечисленных выше недостатков. Наиболее дорогостоящий элемент схемы — дросселя.

Соответственно это может привести к несчастным случаям. Также можно с легкостью обыгрывать стандартные схемы подключения и избавляться от компонентов, которые неисправны. При включении более мощных трубок емкость конденсаторов стоит увеличить. Однако подчеркнём, что такие схемы позволяют некоторое время запускать даже ЛДС со сгоревшими нитями электродов.

Это аналогичный осветительный прибор, только сильно видоизмененный. По ней сразу понятно, сколько ламп к нему подключается. В данном случае используется не сетевая частота 50 Гц , а высокие частоты 20 — 60 кГц. Лампа работает. СПОСОБ ПОДКЛЮЧЕНИЯ ЛАМПЫ ДНЕВНОГО СВЕТА БЕЗ ДРОССЕЛЯ

https://youtube.com/watch?v=jOd1pXRlIHI

Для чего нужен дроссель

Технические характеристики

Характеристики энергосберегающей лампы предполагают наличие балласта, поглощающего лишнюю мощность в электроцепи. В лампе мощностью 36-40 Вт дроссель забирает около 6 Вт (15%).

Электромагнитные дроссели для ламп люминесцентного типа

Основные функции дросселя:

  • подогрев катодов для их подготовки к эмиссии электронов;
  • создание напряжения, необходимого для стартового разряда;
  • ограничение тока, протекающего по электрической схеме после старта.

В цепи переменного тока дроссель обеспечивает сдвиг фаз между током и напряжением. Величина отставания тока от напряжения, которую вызывает дроссель, указана в его маркировке (cos ϕ). Данная характеристика имеет еще одно название – коэффициент мощности.

Активная мощность определяется по формуле:

P = U х I х cos ϕ, где

U – напряжение,

I – сила тока.

При низком коэффициенте мощности растет потребление реактивной энергии.

Дроссели классифицируются по уровню мощности и шума.

По уровню мощности дроссели делятся на три класса:

  • С – с низким уровнем;
  • В – с супернизким;
  • D – со средним уровнем поглощения.

Различаются дроссели и по уровню шума:

  • С – очень низкий;
  • А – особо низкий;
  • П – пониженный;
  • Н – нормальный.

Принцип работы

Устройство в лампе работает в паре со стартером по такому принципу:

  • при подаче напряжения на лампу ток попадает на стартер – элемент, состоящий из баллона и конденсатора (в баллоне, заполненном инертным газом, размещены контакты из биметалла);
  • под воздействием напряжения происходит ионизация газа, и ток протекает по цепи дросселя. Газ и контакты разогреваются, что приводит к увеличению силы тока до 0,5 А. Следом разогреваются и катоды и освобождаются электроны. Они, в свою очередь, способствуют разогреву ртутных паров, помещенных в трубку лампы;
  • как только контакты замыкаются, завершается ионизация. Температура стартера падает, контакты размыкаются.


Наглядное представление работы дросселя

Как выбрать нужный вид

Выбрать дроссель к люминесцентной лампе, в первую очередь обращайте внимание на его мощность: она должна совпадать с мощностью светильника. Немаловажную роль при выборе играет и производитель: лучше, если это будет известная компания, продукция которой широко применяется

Покупая дешевые изделия неизвестных изготовителей, вы рискуете напрасно выбросить деньги

Немаловажную роль при выборе играет и производитель: лучше, если это будет известная компания, продукция которой широко применяется. Покупая дешевые изделия неизвестных изготовителей, вы рискуете напрасно выбросить деньги.

Еще один вопрос, требующий решения: какой дроссель вы хотите купить – электронный или электромагнитный. Цены на них заметно отличаются.

Cтоимость электромагнитного дросселя в зависимости от мощности начинается примерно со 150 рублей (импортный вариант), а
минимальная цена на электронный дроссель составляет около 500 рублей.

Рекомендуем Вам также более подробно ознакомиться с мощностью люминесцентных ламп.

Поделитесь в социальных сетях:FacebookTwitter
Напишите комментарий