Что такое твердотельное реле и для чего оно нужно?

Виды ТТР

Твердотельные реле по устройству и принципу работы можно разделить на следующие разновидности:

  • По виду управляющего напряжения – переменное или постоянное (дискретные). Иногда на вход подключается переменный резистор, т.е. используется аналоговое управление, соответственно и выходное напряжение меняется плавно, как в диммере для освещения.
  • По виду коммутируемого напряжения – переменное или постоянное.
  • По количеству фаз для переменного напряжения – одна или три.
  • Для трехфазных – с реверсом или без.
  • По конструкции – монтаж на поверхность или на ДИН-рейку. Хотя, практически все производители предлагают переходные планки для универсального монтажа.

Кроме того, стандартной опцией для коммутации переменного напряжения является переключение в момент перехода через ноль.

Выше уже было фото ТТЛ, у которого вход – постоянное напряжение, выход – переменное (АС-DC). Вот ещё какие реле у меня есть сейчас под рукой:

SSR OMRON DC-DC. Вход – постоянное напряжение до 24 В, выход – тоже постоянное, до 200 В

SSR FOTEK DC-DC – твёрдотельные реле постоянного тока

Этими двумя моделями реле удобно коммутировать нагрузку с постоянным напряжением 24 Вольта, когда управляющий сигнал (тоже 24 В) приходит с выхода контроллера или с датчика. Можно сказать, что это такие компактные усилители тока. Причем коэффициент усиления при этом – около 1000, поскольку ток управляющей цепи – менее 10 мА.

Дальше-больше. Ниже показано трехфазное твердотельное реле. На его входы R, S, T подается три фазы 380В, а с его выходов U, V, W напряжение подается на асинхронный двигатель или трехфазный ТЭН.

Fotek 3 phase. Трехфазное твердотельное реле

Это реле работает (по результатам работы) примерно, как магнитный пускатель с катушкой 24 VDC.

Как подключить электродвигатель через магнитный пускатель – подробно расписано на СамЭлектрике здесь.

Управляющие контакты показаны поближе:

Fotek 3 phase. Входные управляющие контакты

Видите на фото, под управляющие контакты предусмотрено ещё одно место, которое в данном случае не используется? На этом месте у другой модели подается сигнал реверса. То есть, при подаче на один вход фазы через реле коммутируются для прямого вращения двигателя, при подаче на другой вход – для обратного.

Кто не в курсе – прямое вращение – это когда двигатель крутится по часовой стрелке, если смотреть ему “в зад”. Как поменять направление вращения двигателя – поменять местами любые две фазы.

По теме рекомендую почитать мою статью по трем фазам и отличии трехфазного питания от однофазного.

Трехфазные реле с реверсом бывают с коммутацией двух фаз, третья подключена к двигателю постоянно.

А теперь представьте, столько места занимает и сколько шума при работе создает обычное реверсивное реле на такой ток? То-то и оно!

Вот такое же ТТЛ, но помощнее и с управлением от переменки 220В.

Fotek TSR-40AA-H 3 phase 40A

Вроде всё, пишите, у кого какой опыт по применению!

Вот нарыл в свободном доступе файлы, возможно, написано информативнее, чем у меня:

Силовая часть ТТР

Эта важная часть ТТР коммутирует ток нагрузки.

Входная и выходная части твердотельного реле гальванически развязаны при помощи оптопары.
Твердотельное реле не имеет отдельного источника питания. И если входная часть ТТР питается от входного источника питания,
то выходная часть питается через нагрузку, получая питание при условии, что эта нагрузка подключена.

Таким образом, если нагрузка имеет высокое сопротивление, с одной стороны,
это хорошо – меньше ток через реле, и оно меньше испытывает перегрузки, работая с большим запасом.
Но если этот ток продолжить уменьшать, ТТР просто не сможет работать – хотя, входная индикация будет показывать, что всё нормально.

Твердотельное реле – устройство и особенности конструкции

На температурный режим могут влиять многие факторы: место установки, температура окружающей среды, циркуляция воздуха, нагрузка на твердотельном реле и др. При использовании на «тяжелые» нагрузки (пуск асинхронного двигателя) необходимо применять дополнительные меры по усилению отвода тепла: устанавливать на радиатор большего размера, сделать принудительное охлаждение (установить вентилятор).

Защита

  • Твердотельные реле имеют встроенную RC-цепь для защиты от ложного включения при использовании на индуктивной нагрузке.
  • Для защиты от кратковременного перенапряжения со стороны нагрузки необходимо использовать варисторы.Они подбираются исходя из величины коммутируемого напряжения Uвар=1,6-2Uком. Следует отметить, что современные ТР выдерживают значительные перенапряжения и без применения варисторов. Гораздо опаснее для ТР перегрузка по току.

  • Для защиты от перегрузки по току необходимо использовать специальные быстродействующие полупроводниковые предохранители. Они подбираются с учетом величины номинального тока реле Iпр=1 — 1,3Iном., причем само ТР должно быть с гораздо большим запасом по току, в т.ч.учитывая пусковые токи нагрузки. Это самый эффективный способ защитить ТР от перегрузки по току. Поскольку реле способно выдерживать только кратковременную (10мс) перегрузку, то использование автоматов защиты не спасет их от выхода из строя.
  • Для корректной работы твердотельного реле при маленьких токах нагрузки (соизмеримых с током утечки) необходимо устанавливать шунтирующее сопротивление параллельно нагрузке.

Примеры применения

Основное применение ТР находят в системах управления нагревом.

Твердотельные реле ZD3, VD, LA чаще всего применяют в технологических процессах, где требуется поддержание температуры с большой точностью (ПИД, Fuzzy режим).

При этом реле VD, LA будут обеспечивать плавную регулировку за счет фазового метода управления.

Твердотельные реле ZA2 чаще применяют в системах, где не требуется высокая точность поддержания температуры (двухпозиционный режим).

Твердотельные реле VA (управление переменным резистором) применяют для ручной регулировки мощности на нагрузке.

Таким устройством можно отрегулировать мощность ТЭНа или ИК-излучателя, изменять яркость свечения лампы накаливания.

Соблюдая определенный ряд условий, твердотельные реле можно использовать для пуска асинхронных двигателей. Необходимо учитывать пусковые токи двигателя и ТР подбирать с многократным запасом по току.

Применять меры по дополнительному отводу тепла. Для защиты ТР от кратковременных перенапряжений использовать варисторы, а для защиты от перегрузки по току быстродействующие предохранители.

Можно организовать управление группой реле от одного источника питания.

В данном случае необходимо подобрать источник с мощностью достаточной для включения всей группы реле. При этом можно оставить возможность включения – выключения отдельного реле для управления требуемой зоной.

Твердотельное реле (SSR) | LAZY SMART

Твердотельное реле (ТТР) — это устройство, предназначенное для коммутации силовой нагрузки. Функционально оно ничем не отличается от обычного электромагнитного реле, но имеет другое устройство, характеристики и принцип действия. Этими особенностями обусловлены сферы, в которых использование твердотельных реле предпочтительнее, чем электромагнитных. Обо всём об этом далее по тексту…

Устройство и принцип работы

Твердотельное реле, как уже было сказано, предназначено для включения/выключения внешней нагрузки. Для этого оно имеет выходной контакт, который замыкается при подаче управляющего напряжения.

Поскольку электронный ключ не может иметь нормально закрытое состояние, выход твердотельного реле всегда нормально-открытый.

Твердотельное реле имеет гальваническую развязку, то есть управляющая и коммутируемая цепи не связаны между собой электрически. Управляющий сигнал передаётся на электронный ключ с помощью встроенного оптрона.

Особенности твердотельного реле

  1. Меньшие габариты по сравнению с «электромагнитным собратом»
  2. Бесшумное переключение и работа
  3. Высокая надёжность и долгий срок службы
  4. Высокая скорость переключения (сравнима со скоростью света)
  5. Отсутствие эффекта искрения и подгорания контактов
  6. Сравнительно высокая стоимость
  7. Более чувствительны к перегрузкам, поэтому должны выбираться с большим коэффициентом запаса (2-4 раза для обычных нагрузок и 6-11 раз для устройств с большими пусковыми токами).

Характеристики твердотельного реле

Тип управляющего напряжения. Это может быть постоянный или переменный ток

Так же стоить обратить внимание на диапазон управляющих напряжений. Например, для постоянного тока это может быть 3-32 В, а для переменного 80 -250 В

Тип коммутируемого напряжения. Аналогично управляющему напряжению может быть постоянным и переменным. Минимальные и максимальные значения коммутируемого напряжения также указываются в паспорте устройства. Максимальный ток нагрузки  —  выбирается сообразно с мощностью предполагаемой нагрузки. Количество фаз коммутируемого переменного напряжения — одно- или трёхфазные.

Области применения твердотельных реле

Исходя из принципа работы и особенностей твердотельных реле, можно сказать, что они применяются в тех случаях, когда требуется большое количество включений/выключений нагрузки за короткое время (высокая частота переключений). В таких системах обычные реле быстро вырабатывают свой ресурс и выходят из строя.

Твердотельные реле часто применяют для включения индуктивной нагрузки (например ТЭНы).

Кроме того, малые габариты и бесшумная работа, тоже могут стать причиной установки твердотельных реле.

Однако, не стоит забывать, что такие реле дороже, поэтому если можно обойтись обычным  электромагнитным реле, лучше так и сделать

Твердотельное реле постоянного тока

Используется для коммутации цепей постоянного тока. Как правило выдерживают достаточно широкий диапазон коммутируемого напряжения (порядка 5 — 230 В). В качестве электронного ключа используется транзистор.

Схема подключения:

Твердотельное реле переменного тока

Предназначены для коммутации цепей переменного тока. В качестве электронного ключа используется симистор или тиристор. Бывают однофазные и трёхфазные версии таких реле.

Реле твердотельное однофазное

Предназначено для коммутации однофазной нагрузки. Схема подключения похожа на схему в случае реле постоянного тока.

Реле твердотельное трёхфазное

Используются для коммутации трёхфазной нагрузки (например электродвигателей).

На входные контакты реле «приходят» три фазы питания, а при подаче управляющего сигнала эти фазы «появляются» на соответствующих выходных клеммах, к которым подключена нагрузка. На следующей схеме через трёхфазное реле запитаны три ТЭНа, соединённых звездой:

Для управления электродвигателями применяют специальные трёхфазные реле с реверсом.

Такое реле имеет три управляющих контакта. Один из них — общий, а два других в паре с ним образуют два управляющих входа. При подаче напряжения на первый, фазы коммутируются для прямого вращения электродвигателя, а при подаче «управляющей фазы» на другой вход — для обратного вращения.

В чем особенности?

При создании твердотельного реле удалось исключить появление дуги или искр в процессе замыкания/размыкания контактной группы. В результате срок службы прибора увеличился в несколько раз. Для сравнения лучшие варианты стандартных (контактных) изделий выдерживают до 500 000 коммутаций. В рассматриваемых ТТР такие ограничения отсутствуют.

Стоимость твердотельных реле выше, но простейший расчет показывает выгоду их применения. Это обусловлено следующими факторами — экономией электроэнергии, продолжительным ресурсом работы (надежностью) и наличием управления с помощью микросхем.

Выбор достаточно широк, чтобы подобрать устройство с учетом поставленных задач и текущей стоимости. В продаже имеются как небольшие приборы для установки в бытовых цепях, так и мощные устройства, используемые для управления двигателями.

Как отмечалось ранее, ТТР отличаются по типу коммутируемого напряжения — они могут быть рассчитаны на постоянный или переменный I. Этот нюанс требуется учесть при выборе.

ПОПУЛЯРНОЕ У ЧИТАТЕЛЕЙ: Скрытая проводка в деревянном доме своими руками, пошаговая инструкция

К особенностям твердотельных моделей стоит отнести чувствительность прибора к нагрузочным токам. В случае превышения этого параметра выше допустимой нормы в 2-3 и более раз, изделие ломается.

Чтобы избежать такой проблемы в процессе эксплуатации, важно внимательно подойти к процессу монтажа и установить в цепи ключа защитные устройства. Кроме того, важно отдавать предпочтение ключам, имеющим рабочий ток в два или три раза превышающий коммутируемую нагрузку

Но и это не все

Но и это не все

Кроме того, важно отдавать предпочтение ключам, имеющим рабочий ток в два или три раза превышающий коммутируемую нагрузку. Но и это не все

Для дополнительной защиты рекомендуется предусмотреть в схеме предохранители или автоматические выключатели (подойдет класс «В»)

Для дополнительной защиты рекомендуется предусмотреть в схеме предохранители или автоматические выключатели (подойдет класс «В»).

Принцип действия

В твердотельных реле взаимодействие управляющего сигнала с управляемым происходит путем формирования гальванической развязки – как правило, с помощью оптрона. Управляющее напряжение подает питание на светодиод, а он, в свою очередь, освещает фотодиод, и с помощью тока последнего включается МОП или тиристор, управляющий нагрузкой. Тиристоры и симисторы используются в устройствах, применяемых при переменном токе, а транзисторы – в приборах с постоянным током. Также применяются и специализированные оптоэлектронные приборы – оптотиристоры и фототиристоры.

Структура ТТР включает:

  • вход – первичная цепь, состоящая из резистора на постоянном изоляторе, имеющего последовательное подключение. Главной функцией входной цепи является принятие сигнала и передача его устройству реле, коммутирующему нагрузку;
  • оптическая развязка – используется для изоляции входной и выходной сети переменного тока;
  • триггерная цепь – отдельный элемент, обрабатывающий входной сигнал и переключающий выход;
  • цепь переключателя – подает силу напряжения, включает в себя транзистор, симистор и кремниевый диод;
  • цепь защиты – может быть внешней или внутренней, защищает устройство от сбоев или появления ошибок.

Для коммутации индуктивной нагрузки при помощи твердотельного реле необходимо увеличить запас тока не менее, чем в 6–8 раз.

Что такое твердотельное реле

Твердотельное реле (ТТР) или в буржуйском варианте Solid State Relay (SSR) – это особый вид реле, которые выполняют те же самые функции, что и электромагнитное реле, но имеет другую начинку, состоящую из полупроводниковых радиоэлементов, которые имеют  своем составе силовые ключи на тиристорах, симисторах или мощных транзисторах.

Твердотельное реле — принцип работы

Твердотельное реле — это устройство, обеспечивающее контакт между низковольтными и высоковольтными электрическими цепями.

Рассматривая структуру данного прибора, большинство моделей схожи между собой, имеют незначительные отличия, которые никак не влияют на принцип их работы.

Структура твердотельного реле включает наличие:

  • входа,
  • оптической развязки,
  • триггерной цепи,
  • цепи переключателя,
  • цепи защиты.

Входом является первичная цепь, которая характеризуется наличием резистора на постоянном изоляторе, который имеет последовательное подключение. Основная функция цепи входа состоит в принятии сигнала и передаче команды устройству твердотельного реле, которое коммутирует нагрузку.

В качестве изоляции входной и выходной сети с переменным током используется устройство оптической развязки. От типа данного компонента, зависит вид реле и его принцип работы.

Для обработки входного сигнала и переключения выхода используется конструкция триггерной цепи. Она выступает, как отдельный элемент, а в некоторых моделях входит в состав оптической развязки.

Чтобы подать силу напряжения на нагрузку используется цепь переключающего типа, которая включает транзистор, кремниевый диод и симистор.

Чтобы защитить твердотельное реле от сбоев в работе или возникновения ошибок, используется отдельная защитная цепь. Это устройство бывает двух видов: внутреннего и внешнего.

Твердотельное реле схема состоит из:

  • системы контроля,
  • устройства твердотельного реле,
  • двигателя, насоса, сварочного аппарата, трансформатора или нагревателя.

Чтобы коммутировать индуктивную нагрузку с помощью твердотельного реле следует увеличить запас тока в 6-8 раз.

Принцип работы твердотельного реле состоит в замыкании или размыкании контактов, которые передают напряжение непосредственно на реле. Чтобы привести в действие контакты необходимо наличие активатора. Его роль в твердотельном реле выполняет полупроводник или твердотельный прибор. В устройствах которые работают при переменном токе это тиристор или симистор, а для приборов с постоянным током — транзистор.

Прибор, который характеризуется наличием ключевого транзистора, является твердотельным реле. Это, например, датчик движения или света, который с помощью транзистора осуществляет передачу напряжения.

Между напряжением в катушке и силовых контактах появляется действие гальванической развязки, которое исчезает в следствие наличия оптической цепи.

Это интересно: Производители автоматических выключателей – рейтинг лучших фирм: изучаем развернуто

Твердотельное реле переменного тока из недорогих компонентов

Сегодня промышленность выпускает твердотельные реле (SSR) практически под любые требования, какие только можно себе представить. Только плати – и будет тебе черная коробочка, подав на вход которой несколько миллиампер можно управлять чем угодно: от слабых измерительных сигналов до многих киловатт нагрузки и более.

Маленький камушек оптореле, рассчитанный на коммутацию нескольких сот ватт от бытовой сети будет стоить порядка $10 или более. В то же время, если ограничиться твердотельным реле с максимальным током коммутации в 100мА – мы сразу попадаем в ценовую категорию в районе одного доллара.

Мощное оптореле своими руками

Предлагаю вот такую несложную схему, общая стоимость компонентов в которой едва ли превысит пару баксов. Используя “телефонное” твердотельное реле и широко распространённый симистор (идёт во всякие бытовые диммеры), можно управлять весьма большими мощностями.

  • “Телефонное” твердотельное реле (SSR) = Lh2500 (datasheet)
  • Симистор (TRIAC) = BT139

    Демпферная цепочка из резистора и конденсатора, т.н. “snubber circuit”, ставится для предотвращения нежелательного отпирания симистора в случае очень высокой скорости нарастания напряжения на коммутаторе. На практике, в приложениях типа управления лампами да моторами такое практически не случается. Но в любом случае советую оставить эту цепочку – она ведь ещё служит и хорошим подавителем помех.  По поводу рассчёта этой цепи отсылаю моих читателей к замечательной работе от  Fairchild Semiconductor: Application Note AN-3008 RC Snubber Networks for Thyristor Power Control and Transient Suppression (на английском, если действительно надо – спрашивайте, помогу разобраться).

Если быть педантичным, к схеме надо ещё добавить какой-нибудь вариант подавителя высоковольтных выбросов напряжения. К счастью, симисторы норовят сами просто открыться в подобных сценариях и ограничивают импульсы перенапряжения весьма эффективно. К тому же, в цивилизованном мире, наша схема будет ведь запитана через сообразный фильтр сетевых помех

Как этим управлять

Схемы управления твердотельными реле могут быть очень разнообразны. В простейшем случае сгодится выход ТТЛ или КМОП логики с токоограничивающим резистором последовательно с управляющим входом реле.

В достаточно серьёзной системе, с потенциально длинными кабелями, разделяющими схемы управления и исполнительные (силовые) коробки, я использовал источники тока, управляемые непосредственно от микроконтроллера. Светодиод (1.7В падения) в данной схеме не несёт никакой особой функциональности кроме собственно индикации. Если он не нужен – сопротивление токозадающего резистора следует увеличить до 430 Ом, чтобы обеспечить ток управления в районе 10 мА.

Чтобы облегчить себе жизнь и позволить витым парам действительно перекручиваться так как им заблагорассудится – удобно поставить маленький диодный мостик прямо перед входом реле. Дополнительный резистор в 100 Ом защищает светодиод оптрона от немедленного сгорания в случае неверной коммутации и подачи не слишком высокого питающего напряжения прямо на вход нашего реле. К сожалению все эти удобства “роняют” на себе несколько дополнительных вольт напряжения, поэтому управлять схемой, что идёт ниже, надо источником тока с достаточно большим запасом по напряжению (вольт 12 хотя бы) – как раз сгодится предыдущая схема.

Внимание: приведённая в данной статье схема твердотельного реле противопоказана к применению в аудио разработках и рядом с ними. Несмотря на применение демпфирующей цепочки, а так же сколько бы дополнительных фильтров на неё ни навесить – производимые схемой переключательные помехи норовят самым неприятным образом просочиться в аудио сигнал

Кстати, фирменные твердотельные реле с контролем перехода через ноль на поверку шумят ещё больше.

Вот как фирма Siemens, выпускающая Lh2500, предлагает включать сей продукт в своей документации:

Application:   Motor, Light, Heat, Solenoid Control  

Equipment:    Industrial Controls, Programmable Controllers, Factory Automation Equipment, Appliances  

Поделитесь статьёй со знакомыми.

Характеристики нагрузок реле по пусковым токам

Когда осуществляется подключение твердотельного реле к нагрузке, нужно знать характеристики последней:

  • нагрузки активного характера (ТЭНовые нагреватели) создают незначительные токовые скачки, их можно нивелировать, применяя ТТР, где происходит включение в ноль;
  • осветительные приборы накаливания и лампы галогенного типа, где от 7 до 12 раз сквозь них проходит больший ток, чем номинальный;
  • лампы флуоресцентные на время до 10 секунд дают пульсации тока выше номинального в 5 раз, а то и на порядок;
  • лампы ртутные на время до пяти минут могут перегружать цепь токами, завышенными в 3 раза;
  • реле электромагнитные переменного электричества на время до двух периодов претерпевают скачки в 3-10 раз;
  • ток в катушках соленоида на 1-2 порядка превышает номинал за десятую долю секунды;
  • двигатели электрические за половину секунды дают прирост тока до 10 раз;
  • приборы высокоиндуктивного характера с сердечниками насыщения (трансформаторы, когда они работают вхолостую), включены в фазе ноля по напряжению, ток достигает скачков, до 20, а то и до 40 раз превышающих номинал за время в 0.05-0.20 секунды;
  • когда включены нагрузки емкостного характера в фазе около 90 градусов, ток превышает номинальный в 20-40 раз за время до 10 миллисекунд.

Характеристики

Естественно, у каждой фирмы, предлагающей такие приборы, свои параметры и модели. Рассмотрим основные характеристики наиболее популярных из отечественных твердотельных реле (КИПприбор – KIPpribor, Cosmo, Протон):

  1. ТМ-0 оснащены встроенный схемой «ноль», через которую осуществляется переход фаз;
  2. ТС могут включаться в любой момент фазы;
  3. Самые известные – это контроллеры ТМВ, ТСБ, ТСВ (их еще называют ТМА), ТСА, ТМБ. Они выходной RC-цепью и используются для управления в системах потенциального управления;
  4. ТС/ТМ относятся к силовым. Ток доходит до 25мА;
  5. ТСА и ТМА имеют основное назначение – специальные чувствительные к перепадам напряжения приборы;
  6. ТСБ/ТМБ – это низковольтные модели (до 30 В);
  7. ТСВ/ТМВ – высоковольтные (от 110 до 280В).

Иностранными аналогами являются Carlo Gavazzi, (SSR) Gefran (для инфракрасных активных нагрузок), Finder и CPC (модель SCC).

Основные характеристики TSR-25DA:

ТипПеременный, постоянный ток
Ток срабатывания7.5 мА / 12 VDC
Управляющее напряжение4 – 32 В
Утечка ампер12,5 мА при 380 В
Время реагирования20 мс

90-280VAC, 25A/240VAC от Crydom:

УправлениеAC
Управляющее напряжение, В90–280
Напряжение размыкания, В10
Выходной каскадтиристорный
Контактынр
Коммутируемое переменное напряжение, В20–280
Максимальный ток нагрузки, А25

Твердотельное реле SSR–F 10 DA – H SSR:

ТипПостоянный ток
Срабатывание7,5 мА
Электрическая прочность изоляции вход/выход2,5 кВ
Утечка15,5 мА при 440 В
Реагирование15 мс

Работа твердотельного реле

В гостях у нас ТТР фирмы FOTEK:

Давайте разберемся с его обозначениями.  Вот небольшая табличка-подсказка для этих типов реле

Давайте еще раз взглянем на наше ТТР

SSR — это значит однофазное твердотельное реле.

40 — это на какую максимальную силу тока она рассчитана. Измеряется в Амперах и в данном случае составляет 40 Ампер. 

D — тип управляющего сигнала. От значения Direct Current — что с буржуйского — постоянный ток. Управление ведется постоянным током от 3 и до 32 Вольт. Этого диапазона хватит самому заядлому разработчику радиоэлектронной аппаратуры. Для особо непонятливых даже написано Input, показан диапазон и фазировка напряжения. Как вы видите, на контакт №3 мы подаем «плюс», а на №4 мы подаем «минус».

А — тип коммутируемого напряжения. Alternative current — переменный ток. Цепляемся в этом случае к выводам №1 и №2. Можем коммутировать диапазон от 24 и  до 380 Вольт переменного напряжения.

Для опыта нам понадобится лампа  накаливания на 220 Вольт и простая вилка со шнуром. Соединяем лампу со шнуром только в одном месте:

В разрыв вставляем наше  твердотельное реле

Втыкаем вилку в розетку и…

Нет… не хочет… Чего-то не хватает…

Не хватает управляющего напряжения! Выводим напряжение от Блока питания  от 3 и до 32 Вольт постоянного напряжения. В данном случае я взял 5 Вольт. Подаю на управляющие контакты и…

О чудо! Лампочка загорелась!  Это значит, что контакт №1 замкнулся с контактом №2. О срабатывании реле нам также говорит и светодиод на корпусе самого реле. 

Интересно, какую силу тока потребляют управляющие контакты реле? Итак, имеем на блоке 5 Вольт.

А сила тока получилась 11,7 миллиампер! Можно управлять хоть микроконтроллером!

Общие рекомендации по выбору твердотельных реле

Тепло, выделяемое УСБ при коммутации нагрузки, вызвано электрическими потерями в силовых полупроводниковых элементах. Повышение температуры SSR ограничивает величину коммутируемого тока, поскольку чем выше температура ТДС, тем меньший ток может быть коммутирован. Достижение температуры 40° C не приводит к существенному ухудшению характеристик, в то время как температура 60° C значительно снижает допустимый ток переключения: нагрузка может быть отключена не полностью, а твердотельное реле может стать неуправляемым или даже выйти из строя.

Таким образом, для продолжительной работы твердотельного реле в номинальных и особенно в “тяжелых” приложениях (непрерывное включение при токах нагрузки свыше 5 А), требуется использование радиаторов или воздушного охлаждения для отвода тепла. Для больших нагрузок, например, индуктивных (катушки, соленоиды и т.д.) рекомендуется выбирать твердотельное реле с большим запасом тока (2-4 раза), в то время как при использовании твердотельных реле для управления асинхронным двигателем требуется 6-10-кратный запас тока.

Для большинства типов нагрузок пусковой ток сопровождается броском тока (пусковой перегрузкой) различной длительности и амплитуды, что необходимо учитывать при выборе твердотельного реле.

Для различных типов нагрузок могут быть заданы следующие пусковые перегрузки:

  • Чисто активные нагрузки (нагреватели, такие как HET) дают минимально возможные пики тока, которые практически исключаются при использовании твердотельного реле с нулевым переключением;
  • лампы накаливания, галогенные лампы при включении проводят ток, в 7…12 раз превышающий номинальный ток;
  • Люминесцентные лампы дают короткие пики тока в 5-10 раз превышающие номинальный ток в первые секунды (до 10 с);
  • Ртутные лампы дают тройную перегрузку по току в первые 3-5 минут;
  • Катушки реле переменного тока: ток в 3…10 раз выше номинального тока в течение 1-2 периодов времени
  • обмотки катушки: 10…20-кратный номинальный ток в течение 0,05 – 0,1 с
  • электродвигатели: 5…10-кратный номинальный ток в течение 0,2 – 0,5 сек;
  • Большие индуктивные нагрузки с насыщенными сердечниками (трансформаторы холостого хода), при переключении в фазу нулевого напряжения: ток в 20-40 раз выше номинального тока в течение 0,05 – 0,2 сек;
  • Емкостные нагрузки, при переключении в фазе, близкой к 90°: ток, в 20-40 раз превышающий номинальный ток в течение от десятков микросекунд до десятков миллисекунд.

Способность твердотельных реле выдерживать токовые перегрузки определяется величиной импульсного тока, т.е. амплитудой одиночного импульса определенной длительности (обычно 10 мс). Для реле постоянного тока это значение обычно в 2-3 раза больше максимально допустимого постоянного тока, для тиристорных реле это отношение составляет около 10. Для токовых перегрузок любой длительности можно принять эмпирическую зависимость: увеличение длительности перегрузки на порядок приводит к уменьшению диапазона тока.

Выбор номинального тока твердотельного реле для данной нагрузки предполагает выбор запаса выше номинального тока реле и введение дополнительных мер по снижению пусковых токов (токоограничивающие резисторы, дроссели и т.д.).

Для повышения устойчивости твердотельного реле к импульсным помехам параллельно переключающим контактам реле помещается цепь, состоящая из резистора и конденсатора, соединенных последовательно (RC-цепочка).

Для более полной защиты от источника перенапряжения со стороны нагрузки защитные варисторы должны быть подключены параллельно к каждой фазе твердотельного реле.

Все полупроводниковые приборы такого типа делятся на секции, среди которых выделяют входную секцию, оптопару, триггер и цепи коммутации и защиты. Входная секция имеет отдельную первичную цепь, в которую последовательно включен резистор. Основная задача входной секции – принимать импульсы и передавать их в секцию коммутации.

Виды ТТР

Данные устройства представлены множеством видов. Они отличаются способом коммутации и контроля напряжения:

  1. Твердотельные реле постоянного тока применяются для подключения к сети с постоянным электричеством. Диапазон напряжения может варьироваться в пределах от 3 до 32-х Вт. ТТР отличается высокой надежностью и может иметь светодиодную индикацию. Работает при температуре окружающей среды от -30°С до +70°С.
  2. Контактор переменного тока не производит шума, отличается быстродействием и низким потреблением энергии. Диапазон напряжения — 90-250 Вт.
  3. ТТР с ручным управлением. В данном приборе можно самостоятельно установить тип работы.

Кроме того, существуют однофазные и трехфазные реле.

Первая релюшка может соединять цепи в диапазоне от 10 до 120 А или от 100 до 500 А. Коммутация осуществляется с помощью резистора и аналогового сигнала. Во втором случае коммутация проводится одновременно на 3 фазах с рабочим интервалом 10-120 А. Трехфазные контакторы бывают реверсивного типа. Их отличие заключается в бесконтактной коммуникации и специальной маркировке. Такие устройства имеют надежную защиту от ложных включений.

Трехфазный ТТР необходим для старта и корректной работы асинхронного двигателя

Чтобы безопасно эксплуатировать данное устройство, важно соблюдать запас мощности напряжения

Во время работы твердотельного реле переменного тока может происходить перенапряжение. Чтобы защитить устройство, необходимо использовать предохранитель или варистор.

Благодаря коммутации через ноль, а также светодиодной индикации, трехфазный прибор имеет более длительный срок службы.

Помимо метода коммуникации устройства отличаются:

  • слабостью индукции и нагрузкой емкостного типа;
  • методом включения (случайный или мгновенный);
  • наличием фазового управления.

Прибор имеет конструкционные отличия:

  • универсальные — конструкция позволяет устанавливать реле на переходные планки;
  • монтируемые на DIN-рейки.

Приобретать данный продукт стоит в специализированных магазинах, где специалисты смогут помочь с выбором необходимого типа и подскажут, как подключить прибор. Устройство может отличаться:

  • способом крепления;
  • материалом корпуса;
  • дополнительными функциями;
  • уровнем производительности;
  • габаритами и прочими параметрами.

Важно! Устанавливаемое реле должно иметь запас мощности в несколько раз больше, чем используемое устройство. Несоблюдение этого условия может привести к мгновенному выходу из строя ТТР

Защитить прибор от перенапряжения можно, установив предохранитель.

Контактор быстро нагревается. Это приводит к существенной потере производительности. При нагреве выше 65°С устройство может сгореть. Использование прибора допускается только с охлаждающим радиатором. Запас тока должен быть выше в 3 раза. При работе с асинхронными моторами запас увеличивается в 10 раз.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий