Твердотельное реле: виды, практическое применение, схемы подключения

Твердотельное реле (SSR) | LAZY SMART

Твердотельное реле (ТТР) — это устройство, предназначенное для коммутации силовой нагрузки. Функционально оно ничем не отличается от обычного электромагнитного реле, но имеет другое устройство, характеристики и принцип действия. Этими особенностями обусловлены сферы, в которых использование твердотельных реле предпочтительнее, чем электромагнитных. Обо всём об этом далее по тексту…

Устройство и принцип работы

Твердотельное реле, как уже было сказано, предназначено для включения/выключения внешней нагрузки. Для этого оно имеет выходной контакт, который замыкается при подаче управляющего напряжения.

Поскольку электронный ключ не может иметь нормально закрытое состояние, выход твердотельного реле всегда нормально-открытый.

Твердотельное реле имеет гальваническую развязку, то есть управляющая и коммутируемая цепи не связаны между собой электрически. Управляющий сигнал передаётся на электронный ключ с помощью встроенного оптрона.

Особенности твердотельного реле

  1. Меньшие габариты по сравнению с «электромагнитным собратом»
  2. Бесшумное переключение и работа
  3. Высокая надёжность и долгий срок службы
  4. Высокая скорость переключения (сравнима со скоростью света)
  5. Отсутствие эффекта искрения и подгорания контактов
  6. Сравнительно высокая стоимость
  7. Более чувствительны к перегрузкам, поэтому должны выбираться с большим коэффициентом запаса (2-4 раза для обычных нагрузок и 6-11 раз для устройств с большими пусковыми токами).

Характеристики твердотельного реле

Тип управляющего напряжения. Это может быть постоянный или переменный ток

Так же стоить обратить внимание на диапазон управляющих напряжений. Например, для постоянного тока это может быть 3-32 В, а для переменного 80 -250 В

Тип коммутируемого напряжения. Аналогично управляющему напряжению может быть постоянным и переменным. Минимальные и максимальные значения коммутируемого напряжения также указываются в паспорте устройства. Максимальный ток нагрузки  —  выбирается сообразно с мощностью предполагаемой нагрузки. Количество фаз коммутируемого переменного напряжения — одно- или трёхфазные.

Области применения твердотельных реле

Исходя из принципа работы и особенностей твердотельных реле, можно сказать, что они применяются в тех случаях, когда требуется большое количество включений/выключений нагрузки за короткое время (высокая частота переключений). В таких системах обычные реле быстро вырабатывают свой ресурс и выходят из строя.

Твердотельные реле часто применяют для включения индуктивной нагрузки (например ТЭНы).

Кроме того, малые габариты и бесшумная работа, тоже могут стать причиной установки твердотельных реле.

Однако, не стоит забывать, что такие реле дороже, поэтому если можно обойтись обычным  электромагнитным реле, лучше так и сделать

Твердотельное реле постоянного тока

Используется для коммутации цепей постоянного тока. Как правило выдерживают достаточно широкий диапазон коммутируемого напряжения (порядка 5 — 230 В). В качестве электронного ключа используется транзистор.

Схема подключения:

Твердотельное реле переменного тока

Предназначены для коммутации цепей переменного тока. В качестве электронного ключа используется симистор или тиристор. Бывают однофазные и трёхфазные версии таких реле.

Реле твердотельное однофазное

Предназначено для коммутации однофазной нагрузки. Схема подключения похожа на схему в случае реле постоянного тока.

Реле твердотельное трёхфазное

Используются для коммутации трёхфазной нагрузки (например электродвигателей).

На входные контакты реле «приходят» три фазы питания, а при подаче управляющего сигнала эти фазы «появляются» на соответствующих выходных клеммах, к которым подключена нагрузка. На следующей схеме через трёхфазное реле запитаны три ТЭНа, соединённых звездой:

Для управления электродвигателями применяют специальные трёхфазные реле с реверсом.

Такое реле имеет три управляющих контакта. Один из них — общий, а два других в паре с ним образуют два управляющих входа. При подаче напряжения на первый, фазы коммутируются для прямого вращения электродвигателя, а при подаче «управляющей фазы» на другой вход — для обратного вращения.

Виды твердотельных реле и схемы подключения

Варианты твердотельных реле делятся по следующим признакам:

  • По характеристике напряжения управляющего сигнала, постоянного или переменного, его значения;
  • В случае наличия напряжения в соединительной линии также переменного или постоянного тока;
  • По числу фаз, в цепях переменного тока однофазные или трехфазные реле;
  • По схемам подключения в трехфазных цепях могут быть варианты с реверсом и без реверса;
  • По проекту дома, для монтажа на ровную поверхность, на DIN-рейку или универсальный.

В некоторых случаях преобразователи напряжения устанавливаются в одном корпусе с реле, тогда на входе изделия переменное напряжение, а на выходе постоянное или наоборот, в зависимости от назначения преобразователя. Твердотельные реле способны коммутировать нагрузки в цепях с током до сотен ампер.


Твердотельное реле для коммутации трехфазной цепи переменного тока

Такие изделия используются для управления работой асинхронных электродвигателей напряжением 380/220В. С левой стороны два вывода для подачи управляющего напряжения постоянного тока с указанием полярности, величиной от 4 до 32 В.

К контактам РСТ подключаются три фазы 220В от распределительного щита, к контактам УВВ провода, идущие к электродвигателю. При кратковременной подаче постоянного управляющего напряжения 12 или 24В все три фазы замыкаются и на обмотки двигателя поступает ток.

Существуют реле с более простой однофазной схемой подключения для подключения систем освещения, обогревателей и другого оборудования, питаемого от сети 220 В.

Такое реле коммутирует однофазные цепи, принцип работы аналогичен управляющим контактам, подается постоянное напряжение от 3 до 18 В, в результате чего тиристор открывается и через коммутируемую фазу проходит ток.

Наиболее важные технические характеристики этой модели указаны на корпусе. Напряжение в цепи выключателя должно быть не более 240 А, токи нагрузки не более 2,5А.


Вариантов коммутации схем много, это зависит от функционального назначения систем, в которых они используются.

В этой схеме в цепи управления и коммутации используются напряжения постоянного тока. Такие варианты часто используются в схемах электроснабжения автотранспорта, где источником питания является аккумуляторная батарея.

Какие преимущества по сравнению с механическими реле

По сравнению с классическими электромагнитными реле, твердотельные коммутаторы обладают несомненными преимуществами. В первую очередь, отсутствие механической системы и движущихся частей. Это означает повышенную надежность за счет исключения износа, поломок, коррозии, растягивания пружин и т.п. Отсутствие контактной группы означает, помимо повышенной надежности, еще и отсутствие искрения даже при коммутации индуктивных нагрузок, отсутствие необходимости в профилактическом обслуживании (чистке контактов) и отсутствие необходимости борьбы с дребезгом.

Внутри полупроводникового реле движущиеся механические части отсутствуют

Что касается цепей управления, то в обычном реле для создания усилия, необходимого для движения якоря требуется достаточный ток. Для его создания требуется мощный управляющий сигнал, в то время, как твердотельным реле можно управлять с помощью небольших токов. Еще одним преимуществом полупроводниковых коммутаторов служит отсутствие катушки индуктивности – ее коммутация при управлении создает некоторые проблемы (искрение контактов источника управляющего сигнала, отрицательный выброс во время коммутации и т.п.). К плюсам относят и более низкие массогабаритные характеристики, а также меньшую стоимость

В некоторых случаях важно, что переключение полупроводникового устройства происходит с большей скоростью. В других ситуациях преимуществом является бесшумность работы твердотельных ключей

Не обходится и без минусов, основной из которых – ненулевое переходное сопротивление силовой цепи (чистый металлический контакт электромагнитного реле дает практически нулевое сопротивление). В разомкнутом же состоянии сопротивление заметно меньше, чем у воздушного промежутка механических контактов. Оба этих неприятных момента ведут к выделению электрической мощности на силовом элементе в закрытом и открытом состоянии.

Другая проблема – не всегда линейная зависимость тока через силовой канал от приложенного напряжения, что может давать искажения коммутируемого сигнала (это ограничивает применение подобных устройств, например, в аудиотехнике или в цепях радиоприемной или передающей аппаратуры).

Конструктивные особенности

В основе твердотельного реле лежит электронная плата, в состав которой входит три главных элемента — узлы управления и развязки, а также силовой ключ. В роли силовых элементов применяются такие детали:

  • Для постоянного I — транзисторы полевого типа, простые транзисторы, модульные элементы класса IGBT, а также MOSFET-транзисторы.
  • Для переменного I — сборки на базе тиристоров, а также симисторы.

Развязка цепи обеспечивается оптронами — изделиями, состоящими из излучающего и принимающего свет устройства. Между ними установлен диэлектрик, имеющий прозрачную структуру.

Управляющий узел выполнен в виде стабилизирующей схемы, обеспечивающей оптимальные уровни тока и напряжения для излучающего свет элемента. Напряжение на входе схемы должно быть от 70 до 280 Вольт.

Что касается напряжения нагрузки, его величина — до 480 Вольт. Расположение электроприбора (до или после ТТР) не имеет значения.

Как правило, устройство монтируется после нагрузки с последующим подключением к «земле». При таком варианте схемы удается защитить внутренние элементы от протекания тока КЗ (он потечет через заземляющий провод).

Конструкция и детали

Чувствительность реле изменяют подстроечным конденсатором С4. В устройстве, монтаж которого показан на рис. 1, б, можно применить подстроеч-ные конденсаторы КПВ, КПК-МЛ, КПК-1, резистор R2 составлен из двух-, трех резисторов меньшего номинала, для повышения чувствительности сопротивление этого резистора можно увеличить до 10 … 15 МОм. Ток, потребляемый устройством в дежурном режиме, составляет 1,5 … 2 мА, а при подаче звукового сигнала — 3 … 4 мА.

Монтажная плата устройства показана на рис. 1. Датчик Е1 представляет собой металлическую сетку или пластину размерами примерно 200X Х200 мм.

Работа твердотельного реле

В гостях у нас ТТР фирмы FOTEK:

Давайте разберемся с его обозначениями.  Вот небольшая табличка-подсказка для этих типов реле

Давайте еще раз взглянем на наше ТТР

SSR — это значит однофазное твердотельное реле.

40 — это на какую максимальную силу тока она рассчитана. Измеряется в Амперах и в данном случае составляет 40 Ампер. 

D — тип управляющего сигнала. От значения Direct Current — что с буржуйского — постоянный ток. Управление ведется постоянным током от 3 и до 32 Вольт. Этого диапазона хватит самому заядлому разработчику радиоэлектронной аппаратуры. Для особо непонятливых даже написано Input, показан диапазон и фазировка напряжения. Как вы видите, на контакт №3 мы подаем «плюс», а на №4 мы подаем «минус».

А — тип коммутируемого напряжения. Alternative current — переменный ток. Цепляемся в этом случае к выводам №1 и №2. Можем коммутировать диапазон от 24 и  до 380 Вольт переменного напряжения.

Для опыта нам понадобится лампа  накаливания на 220 Вольт и простая вилка со шнуром. Соединяем лампу со шнуром только в одном месте:

В разрыв вставляем наше  твердотельное реле

Втыкаем вилку в розетку и…

Нет… не хочет… Чего-то не хватает…

Не хватает управляющего напряжения! Выводим напряжение от Блока питания  от 3 и до 32 Вольт постоянного напряжения. В данном случае я взял 5 Вольт. Подаю на управляющие контакты и…

О чудо! Лампочка загорелась!  Это значит, что контакт №1 замкнулся с контактом №2. О срабатывании реле нам также говорит и светодиод на корпусе самого реле. 

Интересно, какую силу тока потребляют управляющие контакты реле? Итак, имеем на блоке 5 Вольт.

А сила тока получилась 11,7 миллиампер! Можно управлять хоть микроконтроллером!

Принцип действия

В твердотельных реле взаимодействие управляющего сигнала с управляемым происходит путем формирования гальванической развязки – как правило, с помощью оптрона. Управляющее напряжение подает питание на светодиод, а он, в свою очередь, освещает фотодиод, и с помощью тока последнего включается МОП или тиристор, управляющий нагрузкой. Тиристоры и симисторы используются в устройствах, применяемых при переменном токе, а транзисторы – в приборах с постоянным током. Также применяются и специализированные оптоэлектронные приборы – оптотиристоры и фототиристоры.

Структура ТТР включает:

  • вход – первичная цепь, состоящая из резистора на постоянном изоляторе, имеющего последовательное подключение. Главной функцией входной цепи является принятие сигнала и передача его устройству реле, коммутирующему нагрузку;
  • оптическая развязка – используется для изоляции входной и выходной сети переменного тока;
  • триггерная цепь – отдельный элемент, обрабатывающий входной сигнал и переключающий выход;
  • цепь переключателя – подает силу напряжения, включает в себя транзистор, симистор и кремниевый диод;
  • цепь защиты – может быть внешней или внутренней, защищает устройство от сбоев или появления ошибок.

Для коммутации индуктивной нагрузки при помощи твердотельного реле необходимо увеличить запас тока не менее, чем в 6–8 раз.

Что такое твердотельное реле

Твердотельное реле (ТТР) или в буржуйском варианте Solid State Relay (SSR) – это особый вид реле, которые выполняют те же самые функции, что и электромагнитное реле, но имеет другую начинку, состоящую из полупроводниковых радиоэлементов, которые имеют  своем составе силовые ключи на тиристорах, симисторах или мощных транзисторах.

Твердотельное реле — принцип работы

Твердотельное реле — это устройство, обеспечивающее контакт между низковольтными и высоковольтными электрическими цепями.

Рассматривая структуру данного прибора, большинство моделей схожи между собой, имеют незначительные отличия, которые никак не влияют на принцип их работы.

Структура твердотельного реле включает наличие:

  • входа,
  • оптической развязки,
  • триггерной цепи,
  • цепи переключателя,
  • цепи защиты.

Входом является первичная цепь, которая характеризуется наличием резистора на постоянном изоляторе, который имеет последовательное подключение. Основная функция цепи входа состоит в принятии сигнала и передаче команды устройству твердотельного реле, которое коммутирует нагрузку.

В качестве изоляции входной и выходной сети с переменным током используется устройство оптической развязки. От типа данного компонента, зависит вид реле и его принцип работы.

Для обработки входного сигнала и переключения выхода используется конструкция триггерной цепи. Она выступает, как отдельный элемент, а в некоторых моделях входит в состав оптической развязки.

Чтобы подать силу напряжения на нагрузку используется цепь переключающего типа, которая включает транзистор, кремниевый диод и симистор.

Чтобы защитить твердотельное реле от сбоев в работе или возникновения ошибок, используется отдельная защитная цепь. Это устройство бывает двух видов: внутреннего и внешнего.

Твердотельное реле схема состоит из:

  • системы контроля,
  • устройства твердотельного реле,
  • двигателя, насоса, сварочного аппарата, трансформатора или нагревателя.

Чтобы коммутировать индуктивную нагрузку с помощью твердотельного реле следует увеличить запас тока в 6-8 раз.

Принцип работы твердотельного реле состоит в замыкании или размыкании контактов, которые передают напряжение непосредственно на реле. Чтобы привести в действие контакты необходимо наличие активатора. Его роль в твердотельном реле выполняет полупроводник или твердотельный прибор. В устройствах которые работают при переменном токе это тиристор или симистор, а для приборов с постоянным током — транзистор.

Прибор, который характеризуется наличием ключевого транзистора, является твердотельным реле. Это, например, датчик движения или света, который с помощью транзистора осуществляет передачу напряжения.

Между напряжением в катушке и силовых контактах появляется действие гальванической развязки, которое исчезает в следствие наличия оптической цепи.

Это интересно: Производители автоматических выключателей – рейтинг лучших фирм: изучаем развернуто

Выход твердотельного реле

Возможности переключения выхода твердотельного реле могут быть как переменного, так и постоянного тока, аналогичными его требованиям к входному напряжению. Выходная цепь большинства стандартных твердотельных реле сконфигурирована для выполнения только одного типа переключающего действия, дающего эквивалент нормально разомкнутого однополюсного однополюсного (SPST-NO) режима работы электромеханического реле.

Для большинства твердотельных реле постоянного тока обычно используются твердотельные коммутационные устройства — силовые транзисторы, Дарлингтона и MOSFET, тогда как для твердотельного реле переменного тока, коммутационные устройства — это симисторные или двухсторонние тиристоры. Тиристоры предпочтительны из-за их высокого напряжения и тока. Один тиристор также может использоваться в схеме мостового выпрямителя, как показано на рисунке.

Наиболее распространенным применением твердотельных реле является переключение нагрузки переменного тока, будь то управление мощностью переменного тока для включения / выключения, затемнение света, управление скоростью двигателя или другие подобные приложения, где необходимо управление мощностью, эти нагрузки переменного тока может легко управляться с помощью постоянного тока низкого напряжения с помощью твердотельного реле, обеспечивающего длительный срок службы и высокие скорости переключения.

Одним из самых больших преимуществ твердотельных реле по сравнению с электромеханическим реле является его способность выключать «переменные» нагрузки переменного тока в точке нулевого тока нагрузки, тем самым полностью устраняя искрение, электрический шум и отскок контактов, связанные с обычными механическими реле и индуктивными нагрузками.

Это связано с тем, что твердотельные реле переключения переменного тока используют SCR и триак в качестве выходного переключающего устройства, которое продолжает проводить после удаления входного сигнала до тех пор, пока переменный ток, протекающий через устройство, не опустится ниже своего порогового значения или не сохранит значение тока. Тогда выход SSR никогда не сможет выключиться в середине пика синусоидальной волны.

Отключение при нулевом токе является основным преимуществом использования твердотельного реле, поскольку оно уменьшает электрические помехи и обратную эдс, связанные с переключением индуктивных нагрузок, которые видятся как искрение контактами электромеханического реле. Рассмотрим диаграмму формы выходного сигнала ниже типичного твердотельного реле переменного тока.

Трехфазные реверсивные реле

  • Главная
  • Реле твердотельное (ТТР / SSR)
  • Трехфазные реверсивные реле

Твердотельное реле – полупроводниковый прибор, предназначенный для бесконтактной коммутации цепей постоянного и переменного тока по сигналу управления. Это новый тип бесконтактных электрических реле собранных по современным мировым стандартам и технологиям. Благодаря своим характеристикам твердотельные реле все чаще заменяют электромагнитные реле и контакторы. Твердотельные реле применяются в системах управления нагревом, освещением, электродвигателями, трансформаторами, электромагнитами и т.д.

Особенности реле:

  • Длительный срок службы
  • Управляющее напряжение 10-30V DC
  • Коммутация по 3-м фазам
  • Отсутствие дребезга контактов и искрения при переключениях
  • Высокое сопротивление изоляции между коммутируемой и управляющей цепью
  • Встроенная RC-цепь и защита от одновременного включения
  • Светодиодная индикация направления вращения

Расшифровка номенклатуры

  1. GDH – Вид твердотельного реле
  2. GDM – однофазные твердотельные реле в корпусе промышленного исполнения (100 – 500А)
  3. GTH – трехфазные твердотельные реле (10 – 120А)
  4. GTR – реверсивные твердотельные реле (10 – 40А)
  5. 40 – рабочий ток 40А (от 10 до 500А)
  6. 48 – рабочее напряжение 24-480V AC, 38 – 24-380V AC, 23 – 5-220V DC
  7. ZD3 – тип управляющего сигнала (способ коммутации)
  8. LA – аналоговый сигнал 4-20мА (фазовое управление)
  9. VD – аналоговый сигнал 0-10V DC (фазовое управление)
  10. ZD – управление 10-30V DC (коммутация при переходе через ноль)
  11. ZD3 – управление 3-32V DC (коммутация при переходе через ноль)
  12. ZA2 – управление 70-280V AC (коммутация при переходе через ноль)
  13. DD3 – управление 3-32V DC (коммутация напряжения постоянного тока)

Варианты исполнений

Выходное напряжение Управляющее напряжение Номинальный коммутируемый ток
10A 25A 40A
480V AC “перек. В 0” 10-30V DC GTR1048ZD GTR2548ZD GTR4048ZD

Технические характеристики и условия эксплуатации:

Модификация твердотельного реле GTRxxxxxZD
Коммутируемое напряжение 48-480V AC 47-63Гц
Управляющее напряжение 10-30V DC
Потребляемый ток в цепи управления ≤40mA
Напряжение вкл./выкл. 8V DC/5V DC
Максимальное пиковое напряжение 1000V AC
Максимальный пиковый ток 10А:100А, 25А:250А, 40:400А в течении 10мс
Падение напряжения в цепи нагрузки ≤1,6V AC
Ток утечки (выключенное состояние) ≤10мА
Время переключения ½ цикла
Светодиодная индикация Зеленый -прямое вращение Красный – обратное вращение
Напряжение пробоя 2500V AC в теч. 1 минуты
Сопротивление изоляции 500МОм при 500V DC
Температура окружающей среды -30…+75°C
Относительная влажность ≤80º (без образования конденсата)
Габаритные размеры 105х74х33мм
Способ монтажа Винтами на монтажную поверхность
Масса ≤450г

Примечание:

  • Реле подбирается с учетом пускового тока двигателя
  • Для защиты реле от перенапряжения применяйте варисторы установленные параллельно цепи нагрузки
  • Для эффективного отвода тепла обязательно использовать радиаторы (и возможно вентилятор)
  • Не переключайте реверс до полной остановки двигателя!
  • Для изменения направления вращения используйте 3-позиционный переключатель с фиксацией в среднем положении (стоп)

Схемы подключения:

Внешний вид и габаритные размеры:

Вернутся в раздел: Твердотельные реле / Maxwell твердотельные реле

Советы по выбору

Предохранитель от повышения нагрузок

Купить твердотельные реле можно только в специализированном магазине электронной техники.  Опытные специалисты помогут подобрать лучшее устройство для определенных целей. На стоимость изделия влияют следующие факторы:

  • тип реле;
  • наличие фиксирующих механизмов;
  • материал корпуса;
  • время включения;
  • фирма-изготовитель и страна производства;
  • мощность;
  • необходимая энергия;
  • габариты.

При покупке важно учесть, что должен быть запас по мощности, превышающий рабочую в несколько раз. Это убережет реле от поломок. Также дополнительно используются специальные предохранители

К самым надежным относятся:

Также дополнительно используются специальные предохранители. К самым надежным относятся:

  • G R – используются в широком диапазоне нагрузок, отличаются высоким быстродействием.
  • G S – работают во всем диапазоне токов. Надежно защищают устройство от превышения нагрузки электросети.
  • A R – защищают компоненты полупроводникового устройства от короткого замыкания.

Такие приборы обеспечивают высокую защиту от поломок. Их стоимость сопоставима с ценой самого реле. Меньшими защитными свойствами и, соответственно, меньшей стоимостью обладают предохранители классов B, C, D.

Преимущества использования твердотельного реле

Одним из основных преимуществ использования твердотельного реле является его высокая надежность и долговечность. Так как в нем отсутствуют подвижные механические части, то твердотельное реле не подвержено износу и излому. Это позволяет использовать его в условиях повышенной вибрации или испытывающих ударные нагрузки.

Другим важным преимуществом является малый размер и легкий вес твердотельных реле. Благодаря компактности конструкции и минимуму деталей, они занимают мало места и могут быть легко интегрированы в различные системы и устройства. Кроме того, малый вес может существенно снизить нагрузку на конструкцию, в которой используется твердотельное реле.

Еще одним важным преимуществом является высокая скорость коммутации твердотельных реле. За счет отсутствия механических частей и использования полупроводниковых элементов, они обеспечивают быстрое и точное переключение сигналов

Это особенно важно в таких областях, как автоматизация процессов, системы управления и промышленная электроника, где требуется высокая точность и скорость работы

Также следует отметить, что твердотельные реле имеют высокую энергоэффективность, так как потребляют минимальное количество энергии для работы. Это позволяет сократить использование ресурсов и снизить энергозатраты. Кроме того, электронные реле обладают высокими показателями электрической изоляции, что обеспечивает безопасность работы и защиту от коротких замыканий.

В целом, твердотельные реле представляют собой надежное, компактное и энергоэффективное устройство, которое находит широкое применение в различных сферах, включая промышленность, энергетику, медицину и телекоммуникации.

Подключение твердотельного реле

Принцип подключения прост. В приборе предусмотрены управляющие входы (на них подается напряжение с четким соблюдением полярности) и выход для подключения нагрузки. Важный момент — качество соединения. Здесь применяется винтовой способ (пайка исключена).

Чтобы избежать повреждения ТТР, важно исключить попадание на контакты пыли, а также посторонних механических элементов. Стоит предусмотреть меры, препятствующие негативному воздействию на кожух прибора (во включенном или отключенном состоянии). После включения запрещено прикасаться к корпусу, который может быть горячим

После включения запрещено прикасаться к корпусу, который может быть горячим

Обратите внимание, чтобы ТТР не располагалось вблизи легковозгораемых материалов. Кроме того, в процессе подключения убедитесь, что коммутация выполнена без ошибок. Если после включения изделие набирает температуру выше 60 градусов Цельсия, установите на него радиатор для охлаждения (причины и особенности этой защитной меры рассмотрены выше)

Если после включения изделие набирает температуру выше 60 градусов Цельсия, установите на него радиатор для охлаждения (причины и особенности этой защитной меры рассмотрены выше).

Если ничего не предпринять, при достижении 80 градусов Цельсия прибор перестанет работать. Управление осуществляется при помощи цепочки с различными вариантами исполнения.

Классификация твердотельных реле

Сферы применения реле разнообразны, поэтому и их конструктивные особенности могут сильно отличаться, в зависимости от потребностей конкретной автоматической схемы. Классифицируют ТТР по количеству подключенных фаз, виду рабочего тока, конструктивным особенностям и типу схемы управления.

По количеству подключенных фаз

Твердотельные реле используются как в составе домашних приборов, так и в промышленной автоматике с рабочим напряжением 380 В.

Поэтому эти полупроводниковые устройства, в зависимости от количества фаз, разделяются на:

  • однофазные;
  • трехфазные.

Однофазные ТТР позволяют работать с токами 10-100 или 100-500 А. Их управление производится с помощью аналогового сигнала.

К трехфазному реле рекомендуется подключать провода различных цветов, чтобы при монтаже оборудования можно было правильно их присоединить

Трехфазные твердотельные реле способны пропускать ток в диапазоне 10-120 А. Их устройство предполагает реверсивный принцип функционирования, который обеспечивает надежность регуляции одновременно нескольких электрических цепей.

Часто трехфазные ТТР используются для обеспечения работы асинхронного двигателя. В его электросхему управления обязательно включаются быстрые предохранители из-за высоких пусковых токов.

По виду рабочего тока

Твердотельные реле нельзя настроить или перепрограммировать, поэтому они могут нормально работать только при определенном диапазоне электропараметров сети.

В зависимости от потребностей ТТР могут управляться электроцепями с двумя видами тока:

  • постоянным;
  • переменным.

Аналогично можно классифицировать ТТР и по виду напряжения активной нагрузки. Большинство реле в бытовых приборах работают с переменными параметрами.

Постоянный ток не используется в качестве основного источника электроэнергии ни в одной стране мира, поэтому реле такого типа имеют узкую сферу применения

Устройства с постоянным управляющим током характеризуются высокой надежностью и используют для регуляции напряжение 3-32 В. Они выдерживают широкий диапазон температур (-30..+70°С) без значительного изменения характеристик.

Реле, регулирующиеся переменным током, имеют управляющее напряжение 3-32 В или 70-280 В. Они отличаются низкими электромагнитными помехами и высокой скоростью срабатывания.

По конструктивным особенностям

Твердотельные реле часто устанавливают в общий электрощит квартиры, поэтому многие модели имеют монтажную колодку для крепления на DIN-рейку.

Кроме того, существуют специальные радиаторы, располагающиеся между ТТР и опорной поверхностью. Они позволяют охлаждать прибор при высоких нагрузках, сохраняя его рабочие характеристики.

Реле крепиться на DIN-рейку преимущественно через специальный кронштейн, который имеет и дополнительную функцию – отводит излишки тепла при работе прибора

Между реле и радиатором рекомендуется наносить слой термопасты, который увеличивает площадь соприкосновения и увеличивает теплоотдачу. Существуют и ТТР, предназначенные для крепления к стене обычными шурупами.

По типу схемы управления

Не всегда принцип работы регулируемой реле техники требует его мгновенного срабатывания.

Поэтому производители разработали несколько схем управления ТТР, которые используются в различных сферах:

  1. Контроль «через ноль». Такой вариант управления твердотельным реле предполагает срабатывание только при значении напряжения, равном 0. Используется в устройствах с емкостной, резистивной (нагреватели) и слабой индуктивной (трансформаторы) нагрузкой.
  2. Мгновенное. Используется при необходимости резкого срабатывания реле при подаче управляющего сигнала.
  3. Фазовое. Предполагает регулирование выходного напряжения методом изменения параметров управляющего тока. Применяется для плавного изменения степени нагрева или освещения.

Твердотельные реле различаются и по многим другим, менее значимым, параметрам

Поэтому при покупке ТТР важно разобраться в схеме работы подключаемой техники, чтобы приобрести максимально соответствующее ей регулировочное устройство

Обязательно должен быть предусмотрен запас мощности, потому что реле имеет эксплуатационный ресурс, который быстро расходуется при частых перегрузках.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий