Что такое анод и катод?

Теория

Цель работы

Ознакомиться с основными фотометрическими величинами; ознакомиться с принципом работы фотометра; проверить выполнение закона Ламберта для источника света

Полупроводниковые диоды и стабилитроны

Выпрямительные диоды и стабилитроны представляют собой полупроводниковые приборы с одним электронно-дырочным переходом (p–n-переходом).

Одним из свойств p–n-перехода является способность изменять свое сопротивление в зависимости от полярности напряжения внешнего источника. Причем разница сопротивлений при прямом и обратном направлениях тока через p–n-переход может быть настолько велика, что в ряде случаев, например для силовых диодов, можно считать, что ток протекает через диод только в одном направлении – прямом, а в обратном направлении ток настолько мал, что им можно пренебречь. Прямое направление – это когда электрическое поле внешнего источника направлено навстречу электрическому полю p–n- перехода, а обратное – когда направления этих электрических полей совпадают. Полупроводниковые диоды, использующие вентильное свойство p–n-перехода, называются выпрямительными диодами и широко используются в различных устройствах для выпрямления переменного тока.

Вольт-амперная характеристика (ВАХ) идеализированного p–n-перехода описывается известным уравнением

где \(I_0\) – обратный ток p–n-перехода; \(q\) – заряд электрона \(q=1,6\cdot 10^{-19}\ Кл\); \(k\) – постоянная Больцмана \(k = 1,38⋅10^{-23} Дж\cdot град\); \(T\) – температура в градусах Кельвина.

Графическое изображение этой зависимости представлено на рис. 1.1.

Вольт-амперная характеристика имеет явно выраженную нелинейность, что предопределяет зависимость сопротивления диода от положения рабочей точки.

Различают сопротивление статическое \(R_{ст}\) и динамическое \(R_{дин}\). Статическое сопротивление \(R_{ст}\), например в точке А (рис. 1.1), определяется как отношение напряжения \(U_A\) и тока \(I_A\), соответствующих этой точке: \(R_{ст} = \frac{U_A}{I_A} = tg{\alpha}\)

Динамическое сопротивление определяется как отношение приращений напряжения и тока (рис. 1.1): \(R_{дин} = \frac{\Delta U}{\Delta I}\);

Рис. 1.1

При малых значениях отклонений \(∆U\) и \(ΔI\) можно пренебречь нелинейностью участка АВ характеристики и считать его гипотенузой прямоугольного треугольника АВС, тогда \(R_{дин} = tgβ\).

Если продолжить линейный участок прямой ветви вольт-амперной характеристики до пересечения с осью абсцисс, то получим точку \(U_0\) – напряжение отсечки, которое отделяет начальный пологий участок характеристики, где динамическое сопротивление \(R_{дин}\) сравнительно велико от круто изменяющегося участка, где \(R_{дин}\) мало.

При протекании через диод прямого тока полупроводниковая структура нагревается, и если температура превысит при этом предельно допустимое значение, то произойдет разрушение кристаллической решетки полупроводника и диод выйдет из строя. Поэтому величина прямого тока диода ограничивается предельно допустимым значением \(I_{пр.max}\) при заданных условиях охлаждения.

Если увеличивать напряжение, приложенное в обратном направлении к диоду, то сначала обратный ток будет изменяться незначительно, а затем при определенной величине \(U_{проб}\) начнется его быстрое увеличение (рис. 1.2), что говорит о наступлении пробоя p–n-перехода. Существуют несколько видов пробоя p–n-перехода в зависимости от концентрации примесей в полупроводнике, от ширины p–n-перехода и температуры:

  • обратимый (электрический пробой);
  • необратимые (тепловой и поверхностный пробои).

Необратимый пробой для полупроводникового прибора является нерабочим и недопустимым режимом.

Рис. 1.2

Поэтому в паспортных данных диода всегда указывается предельно допустимое обратное напряжение \(U_{проб}\) (напряжение лавинообразования), соответствующее началу пробоя p–n-перехода. Обратное номинальное значение напряжения составляет обычно \(0,5\ U_{проб}\) и определяет класс прибора по напряжению. Так, класс 1 соответствует 100 В обратного напряжения, класс 2 – 200 В и т. д.

В некоторых случаях этот режим пробоя используют для получения круто нарастающего участка ВАХ, когда малому приращению напряжения \(∆U\) соответствует большое изменение тока \(ΔI\) (рис. 1.2). Диоды, работающие в таком режиме, называются стабилитронами, т. к. в рабочем диапазоне при изменении обратного тока от \(i_{обр. min}\) до \(i_{обр. max}\) напряжение на диоде остается почти неизменным, стабильным. Поэтому для стабилитронов рабочим является участок пробоя на обратной ветви ВАХ, а напряжение пробоя (напряжение стабилизации) является одним из основных параметров.

Как определить, где анод, а где катод?

При определении катода и анода необходимо в первую очередь ориентироваться на направление тока, а не на полярность источника питания. Несмотря на то, что эти понятия тесно связаны с полярностью тока, они больше обусловлены направлениями векторов электричества.

Например, в аккумуляторах, при перезарядке, происходит изменение ролей катода и анода. Это связано с тем, что во время зарядки изменяется направление электрического тока. Электрод, выполнявший роль электрода при работе аккумулятора в режиме источника питания во время зарядки выполняет функции катода и наоборот – катод превращается в анод.

На рис. 1, изображено процесс электролиза, при котором происходит перемещение анионов (отрицательных ионов) и катионов (положительных ионов). Анионы устремляются к аноду, а положительные катионы – в сторону катода.

Рис. 1. Электролиз

При электролизе перемещаются носители зарядов разных знаков, однако, по определению, анодом является тот электрод, в который втекает ток. На рисунке анод подсоединён к положительному полюсу источника тока, а значит, ток условно втекает в этот электрод.

Обратите внимание на рисунок 2, где изображена схема гальванического элемента. Рис

2

Гальванический элемент

2. Гальванический элемент

Рис. 2. Гальванический элемент

Плюсовой вывод источника тока является катодом, а не анодом, как можно было бы ожидать. При внимательном изучении принципа работы гальванического элемента можно понять, почему анод является отрицательным полюсом.

Обратите внимание на рисунок строения гальванического источника тока. Стрелки (вверху) указывают направление движения электронов, однако направлением тока условно принято считать перемещение от плюса к минусу

То есть, при замыкании цепи, ток входит именно в отрицательный полюс, который и является анодом, на котором происходит реакция окисления

Иначе говоря, ток от положительного электрода через нагрузку попадает на анод, являющийся отрицательным полюсом гальванического элемента. При вдумчивом подходе все стает на свои места

То есть, при замыкании цепи, ток входит именно в отрицательный полюс, который и является анодом, на котором происходит реакция окисления. Иначе говоря, ток от положительного электрода через нагрузку попадает на анод, являющийся отрицательным полюсом гальванического элемента. При вдумчивом подходе все стает на свои места.

При определении позиций анода и катода в радиоэлектронных элементах пользуются справочными материалами.

На назначение электродов указывает:

  • форма корпуса (рис. 3);
  • длина выводов (для светодиодов) (рис. 4);
  • метки на корпусах приборов или знака анода;
  • различная толщина выводов диода.

Рис. 3. ДиодРис. 4. Электроды светодиода

Определение назначений выводов у полупроводниковых диодов можно определить с помощью измерительных приборов. Например, все типы диодов (кроме стабилитронов) проводят ток только в одном направлении. Если вы подключили тестер или омметр к диоду, и он показал незначительное сопротивление, то к положительному щупу прибора подключен анод, а к отрицательному – катод.

Если известен тип проводимости транзистора, то с помощью того же тестера можно определить выводы эмиттера и коллектора. Между ними сопротивление бесконечно велико (тока нет), а между базой и каждым из них проводимость будет (только в одну сторону, как у диода). Зная тип проводимости, по аналогии с диодом, можно определить: где анод, а где катод, а значит определить выводы коллектора или эмиттера (см. рис. 5).

Рис. 5. Транзистор на схемах и его электроды

Что касается вакуумных диодов, то их невозможно проверить путем измерения обычными приборами. Поэтому их выводы расположены таким образом, чтобы исключить ошибки при подключении. В  электронных лампах выводы точно совпадают с расположением контактов гнезда, предназначенного для этого радиоэлемента.

Это интересно: Как правильно паять провода — видео, технология, порядок пайки

Ссылки

Wikimedia Foundation
.
2010
.

Синонимы

Смотреть что такое «Катод» в других словарях:

— (греч. kathodos спуск). Полюс гальванической пары, противоположный аноду. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. КАТОД в гальванических элементах и вольтовом столбе отрицательный полюс, т. е. конец… … Словарь иностранных слов русского языка

катод — а, м. cathode f. <англ. cathode < гр. kathodos путь вниз, спуск. Электрод, соединенный с отрицательным полюсом источника тока (в противоположность аноду). БАС 1. В действии таких приборов, как гальваническая баттарея, полярности нет и быть… … Исторический словарь галлицизмов русского языка

катод — катод Плоская заготовка, получаемая методом электролиза, предназначенная для переплава. катод Отрицательный электрод рентгеновской трубки [Система неразрушающего контроля. Виды (методы) и технология… … Справочник технического переводчика

— (от греч. kathodes ход вниз, возвращение; термин предложен англ. физиком М. Фарадеем в 1834), 1) отрицательный электрод электровакуумного или газоразрядного прибора, служащий источником эл нов, к рые обеспечивают проводимость межэлектродного пр… … Физическая энциклопедия

Эмиттер Словарь русских синонимов. катод сущ., кол во синонимов: 4 термокатод (1) … Словарь синонимов

КАТОД — КАТОД, электрод, соединенный с отрицательным полюсом батареи. Если в жидкость погрузить две металлические пластины, соединенные с полюсами батареи, то различие между катодом и анодом скажется в следующем: если пластины, из к рых сделаны электроды … Большая медицинская энциклопедия

катод — электровакуумного прибора; катод Электрод, основным назначением которого обычно является испускание электронов при электрическом разряде … Политехнический терминологический толковый словарь

— (от греческого kathodos ход вниз, возвращение), электрод электронного либо электротехнического прибора или устройства (например, электровакуумного прибора, гальванического элемента, электролитической ванны), характеризующийся тем, что движение… … Современная энциклопедия

— (от греч. kathodos ход вниз возвращение), в широком смысле электрод различных радио и электротехнических устройств или приборов (электронных ламп, гальванических элементов, электролитических ванн и т. д.), характеризующийся тем, что движение… … Большой Энциклопедический словарь

КАТОД, отрицательно заряженный ЭЛЕКТРОД в электролитическом элементе или ЭЛЕКТРОННОЙ ТРУБКЕ. В процессе ЭЛЕКТРОЛИЗА (где электрическая энергия используется для осуществления химических изменений) к нему притягиваются положительно заряженные ионы… … Научно-технический энциклопедический словарь

КАТОД, катода, муж. (греч. kathodos возвращение) (физ.). Отрицательный электрод; ант. анод. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

Книги

Методы экспериментальной физики в избранных технологиях защиты природы и человека: Монография , Коржавый Алексей Павлович. В книге изложены избранные методы экспериментальной физики, созданные на основе вакуумных СВЧ-, газоразрядных лазеров и приборов отпаянного типа для защиты окружающей природной среды и…

Только в одном направлении. Когда-то давно применялись ламповые диоды . Но сейчас используются в основном полупроводниковые диоды. В отличие от ламповых они значительно меньше по размеру, не требуют цепей накала и их очень просто соединять различным образом.

Условное обозначение
диода на схеме

На рисунке показано условное обозначение диода на схеме. Буквами А и К соответственно обозначены анод диода и катод диода. Анод диода — это вывод, который подключается к положительному выводу , непосредственно или через элементы схемы. Катод диода — это вывод из которого выходит ток положительного потенциала и далее через элементы схемы попадает на отрицательный электрод источника тока. Т.е. ток через диод идёт от анода к катоду. А в обратном направлении диод ток не пропускает. Если каким-то из своих выводов диод подключается к , то на другом его выводе получается постоянное напряжение с полярностью, зависящей от того, как диод подключен. Если он подключен анодом к переменному напряжению, то с катода мы получим положительное напряжение. Если он подключен катодом, то с анода будет получено соответственно отрицательное напряжение.

Этимология

Слово было придумано в 1834 году от греческого ἄνοδος ( анодос ), «восхождение», Уильямом Уэвеллом , с которым Майкл Фарадей посоветовался с некоторыми новыми названиями, необходимыми для завершения статьи о недавно открытом процессе электролиза . В этой статье Фарадей объяснил, что, когда электролитическая ячейка ориентирована так, что электрический ток проходит через «разлагающееся тело» (электролит) в направлении «с востока на запад» или, что усиливает эту помощь памяти, то, в чем солнце кажется движущимся », анод — это то место, где ток входит в электролит, на восточной стороне:« ano up, odos a way; the way that the sun ups ».

Использование слова «восток» для обозначения направления «внутрь» (на самом деле «в» → «восток» → «восход солнца» → «вверх») может показаться надуманным. Ранее, как указано в первой ссылке, процитированной выше, Фарадей использовал более простой термин «эизод» (проход, через который входит ток). Его мотивация изменить его на что-то, означающее «восточный электрод» (другими кандидатами были «восточный электрод», «ориод» и «анатолод»), заключалась в том, чтобы сделать его невосприимчивым к возможному более позднему изменению в соглашении о направлении тока , точная природа которого в то время не было известно. Ссылкой, которую он использовал для этого эффекта, было направление магнитного поля Земли, которое в то время считалось неизменным. Он фундаментально определил свою произвольную ориентацию ячейки как такую, при которой внутренний ток будет проходить параллельно и в том же направлении, что и гипотетическая токовая петля намагничивания вокруг локальной линии широты, которая индуцирует магнитное дипольное поле, ориентированное, как у Земли. Это сделало внутренний поток с востока на запад, как упоминалось ранее, но в случае более позднего изменения конвенции он стал бы с запада на восток, так что восточный электрод больше не был бы «входом». Следовательно, «эизод» стал бы неуместным, тогда как «анод», означающий «восточный электрод», оставался бы правильным в отношении неизменного направления фактического явления, лежащего в основе тока, тогда неизвестного, но, как он думал, однозначно определяемого магнитным эталоном

Оглядываясь назад, можно сказать, что изменение названия было неудачным не только потому, что одни только греческие корни больше не раскрывают функцию анода, но, что более важно, потому что, как мы теперь знаем, направление магнитного поля Земли, на котором основан термин «анод», зависит от разворотов, в то время как текущее соглашение о направлении, на котором был основан термин «эизод», не имеет причин для изменения в будущем.

После более позднего открытия электрона была предложена этимология, более легкая для запоминания и более надежная техническая, хотя исторически ложная, этимология: анод, от греческого anodos , «путь вверх», «путь (вверх) из ячейки (или другое устройство) для электронов ».

Полупроводниковый диод

Полупроводниковый диод — самый простой полупроводниковый прибор, состоящий из одного PN перехода.
Основная его функция — это проводить электрический ток в одном направлении,
и не пропускать его в обратном. Состоит диод из двух слоев полупроводника типов N и P.

На стыке соединения P и N образуется PN-переход (PN-junction).
Электрод, подключенный к P, называется анод. Электрод, подключенный к N , называется катод.
Диод проводит ток в направлении от анода к катоду, и не проводит обратно.

Диод в состоянии покоя

Посмотрим, что происходит внутри PN-перехода, когда полупроводниковый диод находится в состоянии покоя.
То есть тогда, когда ни к аноду, ни к катоду не подключено напряжения.

Итак, в части N имеются в наличии свободные электроны – отрицательно заряженные частицы.
В части P находятся положительно заряженные ионы – дырки.
В результате, в том месте, где есть частицы с зарядами разных знаков,
возникает электрическое поле, притягивающее их друг к другу.

Под действием этого поля свободные электроны из части N дрейфуют через PN переход в часть P и заполняют некоторые дырки.
В итоге получается очень слабый электрический ток, измеряемый в наноамперах.
В результате, плотность вещества в P части повышается и возникает диффузия
(стремление вещества к равномерной концентрации), толкающая частицы обратно на сторону N.

Обратное включение диода

Теперь посмотрим, как у полупроводникового диода получается выполнять свою основную функцию – проводить ток только в одном направлении.
Подключим источник питания — плюс к катоду, минус к аноду.

В соответствии с силой притяжения, возникшей между зарядами разной полярности, электроны из N начнут движение к плюсу и отдалятся от PN перехода.
Аналогично, дырки из P будут притягиваться к минусу, и также отдалятся от PN перехода.
В результате, плотность вещества у электродов повышается.
В действие приходит диффузия и начинает толкать частицы обратно, стремясь к равномерной плотности вещества.

Как мы видим, в этом состоянии диод не проводит ток.
При повышении напряжения, в PN переходе будет все меньше и меньше заряженных частиц.

Прямое включение диода

Меняем полярность источника питания — плюс к аноду, минус к катоду.
В таком положении, между зарядами одинаковой полярности возникает сила отталкивания.
Отрицательно заряженные электроны отдаляются от минуса и двигаются сторону pn перехода. В свою очередь,
положительно заряженные дырки отталкиваются от плюса и направляются навстречу электорнам.
PN переход обогащается заряженными частицами с разной полярностью,
между которыми возникает электрическое поле – внутреннее электрическое поле PN перехода.
Под его действием электроны начинают дрейфовать на сторону P.
Часть из них рекомбинируют с дырками (заполняют место в атомах, где не хватает электрона).
Остальные электроны устремляются к плюсу батарейки. Через диод пошел ток ID.

Чтобы не возникло путаницы, напомню,
что направление тока на электрических схемах обратно направлению потока электронов.

Недостатки реального полупроводникового диода

На практике, в реальном диоде, при обратном подключении напряжения, возникает очень маленький ток,
измеряемый в микро, или наноамперах ( в зависимости от модели прибора ).
В следствии слишком высокого напряжения, может разрушиться кристаллическая структура полупроводника в диоде.
В этом случае, прибор начнет хорошо проводить ток также и при обратном смещении.
Такое напряжение называется напряжение пробоя.
Процесс разрушения структуры полупроводника невосстановим, и прибор приходит в негодность.

При прямом подключении, напряжение между анодом и катодом должно достигнуть определенного значения Vϒ,
для того чтобы диод начал хорошо проводить ток.
Для кремниевых приборов Vϒ — это примерно 0.7V, а для германиевых — около 0.3V.
Более подробно об этом, и других характеристиках полупроводникового выпрямительного диода пойдет речь в статье ВАХ полупроводникового диода.

Как определить, где плюс и минус

Определить полярность светодиода можно несколькими способами:

  • визуально (по длине ножки, по внутренней части колбы, по толщине выводов);
  • при помощи измерительного устройства (мультиметра, тестера);
  • путем подключения питания;
  • по технической документации.

Чаще всего применяется визуальный осмотр прибора. Производители стараются указывать маркировку и метки, по которым можно определить, где плюс и минус у светодиода. Все приведенные методы просты, и их может использовать человек без соответствующих знаний.

 Определяем зрительно

Визуальный осмотр является самым простым способом определения полярности. Существует несколько видов корпусов светодиодов. Наиболее распространенный – цилиндрический диод с диаметром 3,5 мм и более. Чтобы определить катод и анод у диода, нужно рассмотреть прибор. Через прозрачную поверхность будет видно, что площадь катода (отрицательный контакт) больше, чем у анода (положительный). Если рассмотреть внутреннюю часть невозможно, стоит посмотреть на выводы, они также различаются по размерам. Катод будет больше.

Светодиоды для поверхностного монтажа активно используются в прожекторах, лентах, светильниках. Определить контакты в них можно также зрительно. Они имеют ключ (скос), который указывает на отрицательный электрод.

У некоторых светодиодов может быть метка, указывающая на полярность. Это точка, кольцевая полоса, которая смещена к плюсу. У старых образцов есть заостренная с одной стороны форма, соответствующая положительному электроду.

С помощью подключения питания

Найти соответствующие электроды можно путем подачи напряжения малой величины. С помощью такого способа можно также определить исправность прибора. Потребуется источник постоянного тока (например, батарейка или аккумулятор). Светодиод нужно приложить к контактам. При правильном подключении и поднятии напряжения до 3 В диод будет загораться, а его насыщенность и яркость будет расти. Если подключение произошло неверно и полярность не соблюдена, светодиод не засветится.

Дополнительно можно подключить последовательно токоограничивающий резистор с сопротивлением выше 600 Ом. Это обезопасит светодиод от пробоя.

Применение мультиметра

Мультиметр – профессиональное устройство, помогающее определить не только плюс и минус светодиода, но и найти короткое замыкание в электросети, провести диагностику электронных компонентов, замерить основные параметры. С помощью мультитестера можно также определить цвет свечения у диода и пригодность к применению.

Произвести проверку мультиметром можно тремя способами:

  1. Переключатель мультитестера устанавливается в положение «Проверка сопротивления – 2 кОм». Щупами нужно коснуться электродов светодиода. Когда красный щуп коснется анода, а черный – катода, на дисплее появится число от 1600 до 1800. В ином случае или при неисправности на экране будет высвечена 1. Минус способа – отсутствует засветка кристалла.
  2. Переключатель нужно поставить в «прозвонка, проверка диода». Когда красный щуп коснется анода, а черный катода, светодиод начнет светиться. В ином случае диод никак не отреагирует.
  3. Для последнего способа щупы не потребуются. В большинстве моделей есть два гнезда, около которых есть обозначения Е и С – эмиттер и коллектор соответственно. Они используются для проверки транзисторов, но для светодиода это способ также подходит. Если в отверстие С будет помещен катод, светодиод загорится. Это самый быстрый и эффективный метод.

Определение с помощью технической документации

В документе к светодиоду можно найти достаточное количество информации о производителе, хаpaктеристиках, в том числе о полярности. На одно устройство паспорт выдается редко, его можно получить при покупке большой партии компонентов.

Найти информацию можно самостоятельно, если знать марку светодиода. По таблицам с техническими хаpaктеристиками данной модели можно найти способ подключения и где плюс, а где минус.

Как определить что минус, а что плюс (у диода)

Особенность диодов такова, что они проводят заряд только в одном направлении. Чтобы не ошибиться, обычно на корпусе обозначены маркировки. В случае отсутствия маркировок чтобы узнать, как все-таки определить полярности анода и катода у диодов, применяют следующие методы.

  1. Использование мультиметра. Прибор включается в тест-режим. Если на экране засветились цифровые значения — диод подсоединен по прямому маршруту. Красный провод идет к аноду «+», черный к катоду «-».
  2. Внешние признаки:
  • символы «+» и «-» на корпусе;
  • ближе к аноду нанесены обозначения в форме точек или кольцевых линий;
  • вытянутая форма устройства — плюс, приплюснутый — минус;
  1. Включение питания. Собирается простейшая схема, которая состоит из батарейки и лампы.

Обратите внимание! Если включить лампочку, и она начнет гореть — «+» батарейки соединен с положительной полярностью, это есть анод, и прибор будет пропускать через себя ток. Если свет не загорелся, то значит, соединили с отрицательной полярностью — это катод и, соответственно, тока не будет

  1. Инструкция по эксплуатации. Производитель вместе с товаром прилагает подробную техническую документацию, где прописаны все необходимые параметры.

Определение полюсов с помощью лампочки

Поделитесь в социальных сетях:FacebookX
Напишите комментарий