Устройство и сферы применения
Конструктивно RGB–светодиоды представляют собой три светодиодных кристалла с одной оптической линзой, расположенные в одном корпусе. Управление цветом происходит с помощью подачи электрических сигналов на выводы каждого светодиодного кристалла, а сочетание излучений всех трех светодиодов позволяет регулировать итоговый цвет. Для примера, ниже представлен самый популярный RGB–светодиод SMD 5050.
Светодиод RGB – это полноцветный светодиод, смешивая три цвета в разной пропорции можно отобразить любой цвет. К примеру, если зажечь все три цвета на полную мощность, получится свечение белого цвета.
Сферы применения RGB светодиодов напрямую связаны с развитием рынка рекламы и развлекательных мероприятий. Также готовые RGB–светильники и ленты применяются в области светового оформления архитектурных и дизайнерских решений — ночная подсветка зданий или фонтанов, интерьерный свет, индикаторный системы автомобилей и т.д.
Таблица длины волн светодиодов smd 5050, различного свечения
Разнообразие сфер применения многоцветных светодиодных источников света определяет основные виды внешнего оформления RGB–светодиодов: изделия небольшой мощности выпускаются в стандартных круглых корпусах со сферической линзой и выводами под обычную пайку; маломощные RGB–светодиоды в SMD-корпусах поверхностного монтажа широко применяются в светодиодных лентах или полноцветных светодиодных экранах большой площади; в корпусах типа Emitter выпускают мощные RGB–источники света с независимым управление каждым светодиодным кристаллом; сверх яркие светодиоды в корпусах.
Для упрощения систем управления светом в корпуса некоторых серий многоцветных LED–источников света вмонтированы управляющие микросхемы. Схемы расположения выводов (распиновка) Несколько стандартных схем управления определяют структуру внешних выводов RGB–светодиодов и их соединение внутри корпуса. Существует три основных схемы распиновки, которые соблюдаются на большинстве выпускаемых изделий:
- В схеме с общим катодом для управления используется три независимых вывода анода, а катодные выводы LED-кристаллов соединены между собой;
- Распиновка с общим анодом управляется отрицательными импульсами на катодные выводы, а вместе соединены уже анодные электроды светодиодных кристаллов;
- Независимая схема соединения имеет шесть выводов по числу LED кристаллов, соединений внутри корпуса не производится.
Будет интересно Для чего нужны выпрямительные диоды?
Единого стандарта на распиновку не существует, конкретный тип расположения внешних выводов применяют в зависимости от поставленных задач. При отсутствии документов на светодиодное изделие тип внешних выводов легко определить с помощью мультиметра. В режиме прозвонки светодиод будет светиться (мощные светодиоды очень слабо), а мультиметр издавать звук соединения, если красный щуп мультиметра подсоединен к аноду светодиодного кристалла, а черный к его катоду. В случае обратного подключения никаких видимых и слышимых эффектов просто не будет.
Три светодиода и их размеры
Простейший способ подключения и управления режимами работы RGB–светодиодов реализуется с помощью стандартных микроконтроллеров Arduino
Общий вывод подключается к единой шине микроконтроллера, а управляющие сигналы подаются на выводы LED–кристаллов через ограничительные резисторы.Управление режимами свечения светодиодных кристаллов происходит с помощью широтной-импульсной модуляции, где скважность импульсов определяет силу света. Программирование ШИМ–модулятора определяет итоговый цвет всего прибора или циклические режимы работы каждого цвета
RGB-контроллеры в сложных свето-системах
Управление цветом — важная функция, выполняемая RGB-контроллерами. С технической точки зрения устройства представляют собой многоканальные декодеры, где каждый канал выполняет роль диммера. Регулировка цвета происходит автоматически. Для получения эффектных динамических сценариев к каждому каналу декодера RGB подключают светодиоды разного цвета. Одновременное включение каналов позволяет создавать новые необычные световые композиции
При выборе устройства RGB нужно обратить внимание на технические параметры модели:
- Напряжение. Преимущественно используют контроллеры на 12, 24 или 32 В. Контроллер подключают в разрыв цепи между блоком питания и светодиодной лентой.
- Мощность устройства. Определяет число светодиодных изделий, которые можно подключить к контроллеру-декодеру RGB. В технических характеристиках указана максимальная мощность.
- Набор программ. В памяти устройства заложены типовые программы для получения разных световых эффектов. Спецификация режимов не приводится, указывается количество программ.
- Тип управления контроллером-декодером RGB. Электронные устройства управляются дистанционным пультом (инфракрасный и радиоволновый диапазон) или при помощи кнопок.
Отдельные требования предъявляются к герметичности корпуса контроллера, если электронное устройство необходимо устанавливать на улице. При выборе модели нужно учесть диапазон рабочей температуры. Контроллер RGB может выполнять несколько программ — смена цветов с угасанием и без угасания различной интенсивности, монохромное мигание и режим строб. Набор программ зависит от модели устройства.
Пионеры исследований цветовосприятия
Сегодня мы знаем, что сетчатка человеческого глаза содержит три разных типа фоторецепторных клеток, называемых колбочками. Каждый из трёх типов колбочек содержит белок из семейства белков опсинов, который поглощает свет в различных частях спектра:
Поглощение света опсинами Колбочки соответствуют красной, зелёной и синей частям спектра и часто называются длинными (L), средними (M) и короткими (S) согласно длинам волн, к которым они наиболее чувствительны. Одной из первых научных работ о взаимодействии света и сетчатки был трактат «Hypothesis Concerning Light and Colors» Исаака Ньютона, написанный между 1670-1675 гг. У Ньютона была теория, что свет с различными длинами волн приводил к резонансу сетчатки с теми же частотами; эти колебания затем передавались через оптический нерв в «сенсориум».
«Лучи света, падая на дно глаза, возбуждают колебания в сетчатке, которые распространяются по волокнам оптических нервов в мозг, создавая чувство зрения. Разные типы лучей создают колебания разной силы, которые согласно своей силе возбуждают ощущения разных цветов…»
(Рекомендую вам обязательно прочитать отсканированные черновики Ньютона на веб-сайте Кембриджского университета. Я, конечно, констатирую очевидное, но каким же он был гением!)
Больше чем через сотню лет Томас Юнг пришёл к выводу, что так как частота резонанса — это свойство, зависящее от системы, то чтобы поглотить свет всех частот, в сетчатке должно быть бесконечное количество разных резонансных систем. Юнг посчитал это маловероятным, и рассудил, что количество ограничено одной системой для красного, жёлтого и синего. Эти цвета традиционно использовались в субтрактивном смешивании красок. По его собственным словам:
Предположение Юнга относительно сетчатки было неверным, но он сделал правильный вывод: в глазе существует конечное количество типов клеток. В 1850 году Герман Гельмгольц первым получил экспериментальное доказательство теории Юнга. Гельмгольц попросил испытуемого сопоставить цвета различных образцов источников света, регулируя яркость нескольких монохромных источников света. Он пришёл к выводу, что для сопоставления всех образцов необходимо и достаточно трёх источников света: в красной, зелёной и синей части спектра.
Допуск точности резисторов
Каждый изготовленный радиоэлемент отличается определенной точностью исполнения, называемой допуском. Чем меньше допуск, выраженный в процентах, тем лучше. Фактическое сопротивление резистора может тогда отличаться меньше от номинального сопротивления, указанного на корпусе. Допуск можно прочитать на корпусе резистора, информация об этом закодирована в виде цвета последней полоски:
На практике, два резистора номиналом 1 кОм при измерении омметром вообще не будут равны 1000 Ом!
Вернемся к примеру, где нужно запитать красный светодиод от источника питания 2,5 В. Расчеты показали, что нужен резистор 85 Ом. Меньший резистор 82 Ом будет ближайшим в стандарте. Проверим, можно ли его безопасно использовать:
- I макс = (2,5 В — 1,6 В) / 82 Ом = 10,9 мА
- I мин = (2,5 В — 2,2 В) / 82 Ом = 3,6 мА
Даже в худшем случае максимальный ток будет далеко от предельного (20-30 мА), поэтому легко можете использовать этот радиоэлемент с меньшим сопротивлением.
Электрическая схема LED RGB светодиода SMD-5050
Для подключения, а тем более ремонта RGB светодиодной ленты на профессиональном уровне, необходимо представлять, как она устроена, и знать электрическую схему и распиновку применяемых в лентах светодиодов. На фотографии ниже представлен фрагмент RGB светодиодной ленты с нанесенной схемой распайки кристаллов светодиодов.
Как видно на схеме, кристаллы в светодиоде электрически не связаны между собой. Три разноцветных кристалла в одном корпусе светодиода образуют триаду. Благодаря такой конструкции, управляя яркостью свечения каждого кристалла индивидуально можно получить бесконечное количество цветов свечения светодиода. На таком принципе управления цветом построены дисплеи сотовых телефонов, навигаторов, фотоаппаратов, компьютерных мониторов, телевизоров и многих других изделий.
Технические характеристики светодиода SMD-5050 приведены на странице сайта «Справочник по SMD светодиодам».
Типы лент
Rgb изделия могут быть двух видов: аналоговые, цифровые. Ленты первого типа имеют параллельное включение светодиодов. То есть один цвет распространяется по всей длине цепи свечения, регулировка отдельного элемента невозможна. Монтаж и подключение несложный процесс, стоимость материалов невысокая.
RGB LED-3528-60
Цифровые модели обладают сложным механизмом, стоят дороже аналоговых. Но превосходят возможностью управлять любым светодиодом, потому как к каждому устанавливается микросхема.
RGB 5050-48 IC IP67 влагозащищённая
Существуют также ленты, устойчивые к влаге. Особенность их в покрытии силиконом или трубкой из пластика.
Особенности монтажа монохромных световых полос
Монохромные LED-полосы могут иметь различные оттенки, но наиболее распространёнными считаются ленты с белым свечением, которые, в свою очередь, делятся по температурным режимам. К примеру, полосы с тёплым белым светом, более близким по оттенку к лампам накаливания. Это приятное мягкое свечение чуть желтоватого оттенка применяется для спален, гостиных и детских. Если же говорить о холодном свете, то такой наиболее применим для офисных помещений.
ФОТО: designmyhome.ruМонохромная белая лента в интерьере смотрится довольно неплохо
Для подключения монохромной светодиодной ленты требуется лишь 2 контакта: плюс и минус. Монтаж их намного проще, чем RGB, однако и эффект, создаваемый при работе такой полосы, необычным назвать не получится. Попробуем подробно рассмотреть, как подключается монохромная LED-лента.
Инструкция по подключению монохромной световой полосы
Для того, чтобы пошаговая инструкция монтажа воспринималась читателем проще, мы проиллюстрируем все выполняемые действия фотопримерами.
ФОТО: yastroyu.ruМаломощную ленту можно использовать в виде подсветки
Рассмотрим наиболее простой вариант, когда всё оборудование приобретается одновременно в комплекте. В этом случае не потребуется паяльник или дополнительные коннекторы. Все необходимые штекеры уже установлены на оборудовании.
Для начала рассмотрим, что собой представляет комплект. Это:
- светодиодная лента длиной 5 м;
- диммер с пультом дистанционного управления для монохромной ленты;
- блок питания (в нашем случае, его мощность составляет 6 Вт).
ФОТО: youtube.comКомплект для обустройства подсветки: лента, диммер, блок питания
После распаковки требуется соединить светодиодную ленту с диммером, а после этого – с блоком питания. Сделать это крайне просто, нужно всего лишь вставить штекеры в соответствующие гнёзда.
ФОТО: youtube.comСоединение всех элементов цепи – теперь можно включать блок питания в сеть
Включение и выключение светодиодной подсветки осуществляется при помощи ПДУ. Для этого на нём имеются кнопки On и Off.
ФОТО: youtube.comКнопки для включения и выключения светодиодной полосы
Дополнительные кнопки, в нашем случае оранжево-коричневого цвета, регулируют интенсивность мигания светодиодов ленты от самого медленного (сверху) до ускоренного (снизу). Такая опция может создать необходимую атмосферу во время какого-либо праздника, танцев.
ФОТО: youtube.comКнопки для регулирования интенсивности режима стробоскопа
Также на пульте ДУ можно найти кнопки для включения других режимов, вроде цикличного медленного или ускоренного затухания. Если же требуется вручную немного приглушить интенсивность освещения, то вверху имеются клавиши и для этих целей. Это, собственно, и есть сам диммер.
ФОТО: youtube.comКнопки ручного диммирования на ПДУ
Подключение двух и более монохромных лент
Особой разницы в подключении дополнительных лент нет. Однако есть пара нюансов, игнорировать которые не стоит. Во-первых, светодиодные ленты нельзя подключать последовательно, делая из них полосы, длиной более пяти метров. Такие действия приведут к перегреву и перегоранию дорожек, находящихся ближе к блоку питания вследствие повышенной нагрузки на них. Поэтому здесь подойдёт только параллельное подключение.
ФОТО: carnovato.ruСхема коммутации монохромной ленты
Во-вторых, блок питания должен иметь выходную мощность соответствующую всем подключённым к нему светодиодным лентам. В идеале, выходная мощность выпрямителя должна превышать потребляемую на 30%. В противном случае, блок питания будет перегреваться и, в итоге, выйдет из строя.
Лайфхак по подключению RGB-ленты без контроллера
Подобное подключение можно выполнить при наличии в доме трех ненужных блоков питания от старой, вышедшей из строя техники, с выходом на 12 В. Такие адаптеры часто идут к небольшим телевизорам. Их размещают над подвесным потолком или в другом скрытом от глаз месте, но рядом с распределительной коробкой выключателя. Все адаптеры требуется запитать, однако сделать это нужно по отдельности. Для этого используется трехклавишный выключатель. После произведенных работ останется лишь подключить к минусовым проводам цветные выводы. Плюс, идущий от ленты, разделяется на все блоки питания.
Получается, что при нажатии одной из клавиш RGB-светодиод будет загораться определенным цветом. При включении парами в различных вариациях можно добиться нужного оттенка. Конечно, ни о каком пульте или приглушении освещения здесь речи не идет.
RGB контроллер
Кроме этого, обязательно запомните, что полноценную rgb подсветку можно изготовить на основании светодиодов SMD 5050. Именно в них реализована возможность менять цвета в одном источнике света.
Достигается это за счет того, что светодиод собран из трех кристаллов. Во всех остальных видах SMD 2835, SMD 3528 один светодиод может светить только одним цветом.
Из-за этого в подсветке могут возникать небольшие провалы освещенности, когда соседние светодиоды попросту не будут гореть и полоса света не будет выглядеть цельной и сплошной. Примеры и недостатки таких моделей можно посмотреть в статьях ”Характеристики светодиодных лент SMD 3528” и ”Отличия светодиодной ленты SMD 2835 от SMD 3528”.
RGB контроллер подключается после блока питания. С его помощью можно менять не только цвета, но и яркость освещения, разные режимы работы, интенсивность смены расцветки и т.д.
Для режима светомузыки, когда цвета бегают по разным сторонам и сменяют друг друга, потребуются специальные контроллеры. Называются они DMX.
Напрямую через контроллер можно подключать определенную длину светодиодной ленты. Максимум это 5 метров или 10 метров при параллельном подключении двух отрезков по пять.
А что делать, если разноцветная подсветка у вас более 10 метров? Для монохромного варианта все решается параллельным подключением отдельных кусков. Например, подключаете 3 участка по 5м каждый и имеете полноценную подсветку длиной 15м.
Для RGB ленты параллельно спаять и соединить 5-ти метровые участки можно, однако с непосредственным подключением к одному контроллеру имеются нюансы.
Готовые наборы для подсветки потолков
Соберем подсветку персонально под ваш потолок. Качественно!
Доставим до двери в любой город России.
Подробнее >>
Чтобы управлять цветом RGB ленты нужно установить контроллер, который устанавливается между блоком питания и RGB лентой. Также в отличие от одноцветной ленты RGB лента имеет вместо двух проводов коммутации, четыре провода.
Три провода необходимы для управления яркостью красного, зеленого и синего цвета, плюс общий четвертый провод питания. Контроллеры бывают разные по внешнему виду, они могут отличаться по мощности, размеру, способу управления ими (пульт дистанционного управления, кнопки, мобильный телефон, другой контроллер).
Нужно понимать, что у разных контроллеров и разные возможности, одни простые и имеют небольшой набор функций (в большинстве случаев их хватает для интерьерной подсветки), а другие имеют “навороченные функции”, в которых есть потребность разве что в шоу бизнесе, для подсветки сцен. Например, в некоторых контроллерах есть функция дежурной подсветки типа “ночник”, а в некоторых нет такой функции.
Схема подключения RGB-контроллера для светодиодной ленты
Какой бы контроллер вы не выбрали для подсветки, он всегда подключается по одной и той же схеме. Питание контроллера осуществляется через разъем “V+” и “V-”.
На блоке питание тоже есть обозначения “V+” и “V-”. Для подключения контроллера к блоку питания Вам нужно соединить проводом “V+” контроллера с “V+” блока питания и “V-” контроллера с “V-” блока питания. RGB ленту подключают к разъемам контроллера, которые обозначены следующим образом:
- R (red)-управление красным цветом
- G (green)-управление зеленым цветом
- B (blue)-управление синим цветом
- “V+” общий провод. Будьте внимательно не перепутайте , цвета RGB ленты и цвета RGB контроллера.
Если вы перепутаете, то контроллер будет неправильно работать , например, вы нажмете на пульте дистанционного управления кнопку, чтобы зажечь красный цвет, а зажжется, например, зеленый.
RGB светодиод — принцип работы и виды цветных LED. Многоцветные RGBW
В основе идеи создания трехцветного светодиода лежит оптический эффект получения разнообразных оттенков путем смешивания 3-х базовых цветов. В качестве базовых цветов обычно используются красный (R), зеленый (G) и синий (B). Поэтому был создан именно rgb светодиод.
Как устроены 3 цветные led диоды
Конструктивно трехцветный светодиод представляет собой 3 цветных светодиода, смонтированных в общем корпусе, а если быть более точным, 3 кристалла, интегрированных на одной матрице. На рис.1 представлена микрофотография интегрального rgb светодиода. Цветные квадраты на фото – это кристаллы основных цветов.
Виды
Для адаптации к разным вариантам схемы управления, ргб диоды производятся в нескольких модификациях:
- Исполнение с общим катодом
- Исполнение с общим анодом
- Без общего анода или катода, с шестью выводами
В первом случае светодиод управляется сигналами положительной полярности, поступающими на аноды, во втором – отрицательными импульсами, подаваемыми на катоды. Третья модификация исполнения допускает любые варианты коммутации и выпускается обычно в виде SMD компонента.
Подключение
В качестве примера приведем схему подключения ргб диодов к универсальному блоку автоматики Arduino, созданному на базе микроконтроллера ATMEGA. На рис. 2 показана схема подключения rgb led с общим катодом.
Ниже схема с общим анодом:
Выводы RGB в обоих случаях подключаются к цифровым выходам (9, 10,12). Общий катод на Рис.2 соединен с минусом (GND), общий анод на Рис.3 – с плюсом питания (5V).
Arduino — простой контроллер для начинающих роботехников, позволяющий создавать на своей базы различные устройства, от обычной цветомузыки на светодиодах до интеллектуальных роботов.
Управление
Включение светодиода происходит при прохождении прямого тока, когда анод подключен к плюсу, катод к минусу. Многоцветный спектр излучения можно получить, изменяя интенсивность свечения каналов (RGB). Результирующий оттенок определяется соотношением яркостей отдельных цветов. Если все 3 цвета одинаковы по интенсивности свечения, результирующий цвет получается белым.
На цифровых выходах платы Arduino формируются периодические прямоугольные импульсы напряжения, как на рисунке 4., с изменяемой скважностью. Для тех, кто забыл
Скважностью называется отношение длительности периода следования импульсов к длительности импульса
Для тех, кто забыл
Скважностью называется отношение длительности периода следования импульсов к длительности импульса
Чем ниже скважность импульсов канала, тем ярче свечение соответствующего led диода. Программа управления скважностью импульсов цветовых каналов зашита в микросхеме контроллера
Такое изменение скважности импульсов, осуществляемое в целях управления процессом, называется ШИМ (широтно – импульсной модуляцией).
На Рис.4 приведены примеры диаграмм прямоугольных импульсов различной скважности. Управление цветом и интенсивностью свечения rgb диода может осуществляться и без ШИМ
На приведенной ниже схеме применено аналоговое управление трехцветными светодиодами. Суть его заключается в регулировании постоянного тока диодов определенного цвета
Управление цветом и интенсивностью свечения rgb диода может осуществляться и без ШИМ. На приведенной ниже схеме применено аналоговое управление трехцветными светодиодами. Суть его заключается в регулировании постоянного тока диодов определенного цвета.
На схеме (Рис.5) rgb диоды (led1- led10) имеют общий анод. Катоды одного цвета всех диодов объединены, и через резисторы R4.1, R4.2, R4.3 соединяются с эмиттером соответствующего транзистора. Таким образом, все светодиоды красного цвета подключены к транзистору VT1.1, зеленые светодиоды – к VT1.2, синие – к VT1.3.
При перемещении движков потенциометров R1.1, R1.2, R1.3 изменяется ток базы соответствующего транзистора. Величина тока базы определяет степень открытия перехода «эмиттер – коллектор», и, в конечном счете, яркость свечения соответствующего цвета.
Применение цифровых программируемых контроллеров предоставляет практически безграничные возможности управления цветом. В тех же случаях, когда не требуется создание цветовых динамических образов, может быть применен аналоговый способ управления. Это могут быть наружные или интерьерные светильники для статической подсветки с выбором цвета.
Как устроены 3 цветные LED диоды
С точки зрения конструкции, RGB LED — это три цветных светодиода, установленные в один корпус, или, как говорят специалисты, на одной матрице. Обычные виды мощных осветительных приборов содержат три чипа одного цвета. У многоцветных используются красный, зеленый и синий кристаллы (английское Red Green Blue образует аббревиатуру, обозначающую трехцветные светодиоды).
Каждый из них имеет самостоятельное подключение к источнику питания, поэтому вместо обычных двух выводов у них как минимум 4 контакта — по одному на каждый кристалл и один общий. Это позволяет задействовать один из трех чипов, создавать различные сочетания, менять и смешивать цвета в группе. Если режим подключения отдельных кристаллов упорядочить с помощью микроконтроллера, можно получить массу интересных световых эффектов. Подобные технологии известны давно и используются в цветной печати, в устройстве цветных телевизоров и т.п.
Основные технические характеристики светодиодных лент
Различие светодиодных лент выражается не только в их герметичности и цвете светодиодов, но и в зависимости от других технических параметров
Чтобы выбрать ленту, которая будет максимально соответствовать поставленным задачам, важно знать на какие характеристики стоит обратить внимание. К параметрам относят напряжение питания, вид и размер применяемых светодиодов, плотность размещения светодиодов на ленте, длину, класс герметичности и другие свойства. Рассмотрим каждый из них подробнее
Рассмотрим каждый из них подробнее
Рассмотрим каждый из них подробнее.
Напряжение питания
Светодиодные ленты чаще всего имеют напряжение 12, 24 или 36 В. 12 вольт используют стандартные ленты, которые не имеют большой мощности и плотности светодиодов. Более мощные устройства работают с напряжением 24 В, реже 36 В.
Вне зависимости от того, какое напряжение (12 – 36 В) использует прибор, для работы в стандартных электрических сетях 220 В, они комплектуются специальными понижающими трансформаторами. Если подать на светодиодную ленту напряжение сети напрямую, такая лента, естественно, сгорит
Поэтому, при подключении светодиодных устройств, важно понимать с каким напряжением работает подключаемая лента
Вид и размер применяемых светодиодов
Вид и размер светодиодов, которые устанавливают на лентах, обозначаются четырехзначными числами. Две первые цифры обозначают длину светодиода в миллиметрах, а вторые – его ширину. По виду, светодиоды бывают:
• 3528 – имеют небольшой световой поток (около 5 лм на светодиод) и применяются в декоративных целях, так как не светят достаточно ярко. • 5050 (5060) – распространенный тип светодиодных лент, который отличается крупным размером светодиодов и выдает свечение в 12-14 лм на один светодиод. • 2835 – ленту с такими диодами применяют для организации основного освещения, так как они имеют высокую яркость (около 25 лм), а вот в декоре такие варианты практически не применяют. • 5630 – самые яркие светодиоды, которые используют для освещения всех типов помещений. Диоды могут выдавать до 75 лм и при работе сильно нагреваются. Для защиты от перегрева их монтируют на специальных теплоотводящих пластинах из алюминия или другого теплопроводного материала.
Плотность размещения светодиодов на ленте
Качество и яркость освещения при использовании светодиодных лент связано с плотностью монтажа светодиодов
Другими словами, при покупке светодиодной ленты, нужно обратить внимание на количество светодиодов в погонном метре ленты. Стандартные изделия имеют плотность в 30, 60, 90, 120 или 240 светодиодов на один метр длины. Некоторые производители выпускают варианты лент со светодиодами, расположенными в несколько рядов
Это характерно для светодиодных лент типа «бегущий огонь» и других разноцветных лент
Некоторые производители выпускают варианты лент со светодиодами, расположенными в несколько рядов. Это характерно для светодиодных лент типа «бегущий огонь» и других разноцветных лент.
Главное правило здесь очевидно: чем больше плотность светодиодов на ленте, тем выше яркость ленты и больше возможности в управлении цветом.
Степень защиты
Герметичность светодиодной ленты – важное условие для монтажа в помещениях с повышенной влажностью, бассейнах, а также на улице. Существует показатель, который обозначает степень защищенности прибора от проникновения влаги или пыли внутрь корпуса устройства или прямое воздействие на электронные компоненты. В маркировке светодиодной ленты он указывается английскими буквами «IP» и двумя цифрами
В маркировке светодиодной ленты он указывается английскими буквами «IP» и двумя цифрами.
Первая цифра обозначает степень защиты от воздействия пыли и других частиц, вторая о защите от воды. Чем больше каждая цифра – тем существеннее защита светодиодной ленты. Максимальная защита от пыли и влаги обозначается маркировкой IP68. Исходя из условий эксплуатации ленты выбирают её степень защиты. Например, в жилых помещениях с нормальной влажностью применяют ленты IP20 (то есть, не имеющие защиты), для улицы подойдет класс IP55, а вот в бассейнах используют IP67 или IP68.
Программа и режимы
При нажатии на кнопку, в программе будут переключаться режимы светодиодов. Для этого напишем функцию, которая будет принимать на вход состояние счетчика и зажигать светодиод определенным образом.
void setMode(int mode){ if (mode == 1){ // только красный digitalWrite(RLED, HIGH); digitalWrite(GLED, LOW); digitalWrite(BLED, LOW); }else if (mode == 2){ // только зеленый digitalWrite(RLED, LOW); digitalWrite(GLED, HIGH); digitalWrite(BLED, LOW); }else if (mode == 3){ // только синий digitalWrite(RLED, LOW); digitalWrite(GLED, LOW); digitalWrite(BLED, HIGH); } }
Добавим еще несколько режимов смешивания цветов для того, чтобы получить разные оттенки. В результате мы увидим на что способен RGB светодиод и почему их так часто используют в современных источниках освещения.
Вы можете и сами дописать любые режимы для светодиода и даже использовать возможности ШИМ пинов Ардуино, чтобы плавно изменять цвета.
Переключаем режимы
Полный текст программы
const int buttonPin=2; boolean lastButtonState = LOW; boolean buttonState = LOW; int RLED = 9; int GLED = 10; int BLED = 11; int ledMode = 0; void setup(){ Serial.begin(9600); pinMode (buttonPin , INPUT); pinMode(RLED, OUTPUT); pinMode(GLED, OUTPUT); pinMode(BLED, OUTPUT); } void setMode(int mode){ if (mode == 1){ digitalWrite(RLED, HIGH); digitalWrite(GLED, LOW); digitalWrite(BLED, LOW); }else if (mode == 2){ digitalWrite(RLED, LOW); digitalWrite(GLED, HIGH); digitalWrite(BLED, LOW); }else if (mode == 3){ digitalWrite(RLED, LOW); digitalWrite(GLED, LOW); digitalWrite(BLED, HIGH); }else if (mode == 4){ analogWrite(RLED, 127); analogWrite(GLED, 0); analogWrite(BLED, 127); }else if (mode == 5){ analogWrite(RLED, 0); analogWrite(GLED, 127); analogWrite(BLED, 127); }else if (mode == 6){ analogWrite(RLED, 127); analogWrite(GLED, 127); analogWrite(BLED, 0); }else if (mode == 7){ analogWrite(RLED, 85); analogWrite(GLED, 85); analogWrite(BLED, 85); }else{ digitalWrite(RLED, LOW); digitalWrite(GLED, LOW); digitalWrite(BLED, LOW); } } boolean debounce(boolean last){ boolean current = digitalRead(buttonPin ); if (last != current){ delay(3); current = digitalRead(buttonPin ); return current; } } void loop(){ buttonState = debounce(lastButtonState); if (lastButtonState == LOW && buttonState == HIGH){ ledMode++; if (ledMode == 8){ ledMode = 0; } setMode( ledMode ); } lastButtonState = buttonState; }
Плавное управление RGB светодиодом
Управление rgb светодиодом на Arduino можно сделать плавным, используя аналоговые выходы с «ШИМ». Для этого ножки светодиода необходимо подключить к аналоговым выходам, например, к пинам 11, 10 и 9. И подавать на аналоговые выходы микроконтроллера различные значения ШИМ (PWM), для этого воспользуемся циклом for, с помощью которого можно повторять нужные команды в программе.
Скетч для плавного мигания RGB светодиода
#define RED 11 // присваиваем имя RED для пина 11 #define GRN 10 // присваиваем имя GRN для пина 10 #define BLU 9 // присваиваем имя BLU для пина 9 void setup() { pinMode(RED, OUTPUT); // используем Pin11 для вывода pinMode(GRN, OUTPUT); // используем Pin10 для вывода pinMode(BLU, OUTPUT); // используем Pin9 для вывода } void loop() { // плавное включение/выключение красного цвета for (int i = 0; i <= 255; i++) { analogWrite(RED, i); delay(2); } for (int i = 255; i >= 0; i—) { analogWrite(RED, i); delay(2); } // плавное включение/выключение зеленого цвета for (int i = 0; i <= 255; i++) { analogWrite(GRN, i); delay(2); } for (int i = 255; i >= 0; i—) { analogWrite(GRN, i); delay(2); } // плавное включение/выключение синего цвета for (int i = 0; i <= 255; i++) { analogWrite(BLU, i); delay(2); } for (int i = 255; i >= 0; i—) { analogWrite(BLU, i); delay(2); } }
Пояснения к коду:
- с помощью директивы #define мы заменили номера пинов 9, 10 и 11 на соответствующие имена RED, GRN и BLU. Это сделано для удобства, чтобы не запутаться в скетче и понимать какой цвет мы включаем;
- пины 9, 10 и 11 мы использовали, как аналоговые выходы analogWrite.
Подключение многоцветных светодиодов
Вам будет интересно:Что такое OneNote и как его запустить: инструкция
Канал ДНЕВНИК ПРОГРАММИСТА
Жизнь программиста и интересные обзоры всего. Подпишись, чтобы не пропустить новые видео.
Монтаж подобных элементов достаточно прост, следует лишь вникнуть в суть и запомнить некоторые правила. Главное — понять распиновку RGB-светодиода. Отрицательный заряд (минусовой провод) всегда идет к катоду. Схема здесь будет следующей. Если используется LED-элемент типа «СА», то плюсовой заряд на него поступает постоянно, а управление осуществляется отрицательными импульсами. При использовании светодиода «СС» все происходит наоборот. Что же касается элемента на 6 выводов – здесь распределение положительных и отрицательных импульсов производится одновременно – эту работу выполняет специальный контроллер.
Если отсутствует маркировка типа и схема монтажа, перед подключением RGB-светодиода его следует «прозвонить». Сделать это можно при помощи мультиметра, выставив переключатель на короткое замыкание. При нахождении правильной пары анод/катод раздастся звуковой сигнал, а LED-элемент засветится. Если плюс с минусом перепутаны, ничего происходить не будет.
Полезно знать! Если в руках у мастера обычный трехцветный светодиод, то самый длинный из его выводов и будет являться общим. А катод это или анод, придется проверить мультиметром.