Фронтальное сечение
2. Подбор и расчет калориферов – этап второй. Определившись с необходимой тепловой мощностью водяного калорифера
приточной установки для обогрева требуемого объема, находим фронтальное сечение для прохода воздуха. Фронтальное
сечение – рабочее внутреннее сечение с теплоотдающими трубками, через которое непосредственно проходят потоки
нагнетаемого холодного воздуха. G – массовый расход воздуха, кг/час; v – массовая скорость воздуха – для оребренных калориферов принимается в
диапазоне 3 – 5 (кг/м²•с). Допустимые значения – до 7 – 8 кг/м²•с.
Ниже представлена таблица с данными двух, трех и четырехрядных воздухонагревателей типа КСк-02-ХЛ3 производства ООО Т.С.Т.
В таблице приводятся основные технические характеристики для расчета и подбора всех моделей данных теплообменников: площадь
поверхности нагрева и фронтального сечения, присоединительных патрубков, коллектора и живого сечения для прохода воды, длина
теплонагревательных трубок, число ходов и рядов, масса. Готовые расчеты на различные объемы нагреваемого воздуха, температуру
входящего воздуха и графики теплоносителя можно посмотреть, кликнув на модель выбранного Вами калорифера вентиляции из таблицы.
Калориферы КСк2Калориферы КСк3Калориферы КСк4
Наименование калорифера | Площадь, м² | Длина теплоотдающего элемента (в свету), м | Число ходов по внутреннему теплоносителю | Число рядов | Масса, кг | ||||
---|---|---|---|---|---|---|---|---|---|
поверхности нагрева | фронтального сечения | сечения коллектора | сечения патрубка | живого сечения (средняя) для прохода теплоносителя | |||||
КСк 2-1 | 6.7 | 0.197 | 0.00152 | 0.00101 | 0.00056 | 0.530 | 4 | 2 | 22 |
КСк 2-2 | 8.2 | 0.244 | 0.655 | 25 | |||||
КСк 2-3 | 9.8 | 0.290 | 0.780 | 28 | |||||
КСк 2-4 | 11.3 | 0.337 | 0.905 | 31 | |||||
КСк 2-5 | 14.4 | 0.430 | 1.155 | 36 | |||||
КСк 2-6 | 9.0 | 0.267 | 0.00076 | 0.530 | 27 | ||||
КСк 2-7 | 11.1 | 0.329 | 0.655 | 30 | |||||
КСк 2-8 | 13.2 | 0.392 | 0.780 | 35 | |||||
КСк 2-9 | 15.3 | 0.455 | 0.905 | 39 | |||||
КСк 2-10 | 19.5 | 0.581 | 1.155 | 46 | |||||
КСк 2-11 | 57.1 | 1.660 | 0.00221 | 0.00156 | 1.655 | 120 | |||
КСк 2-12 | 86.2 | 2.488 | 0.00236 | 174 |
Наименование калорифера | Площадь, м² | Длина теплоотдающего элемента (в свету), м | Число ходов по внутреннему теплоносителю | Число рядов | Масса, кг | ||||
---|---|---|---|---|---|---|---|---|---|
поверхности нагрева | фронтального сечения | сечения коллектора | сечения патрубка | живого сечения (средняя) для прохода теплоносителя | |||||
КСк 3-1 | 10.2 | 0.197 | 0.00164 | 0.00101 | 0.00086 | 0.530 | 4 | 3 | 28 |
КСк 3-2 | 12.5 | 0.244 | 0.655 | 32 | |||||
КСк 3-3 | 14.9 | 0.290 | 0.780 | 36 | |||||
КСк 3-4 | 17.3 | 0.337 | 0.905 | 41 | |||||
КСк 3-5 | 22.1 | 0.430 | 1.155 | 48 | |||||
КСк 3-6 | 13.7 | 0.267 | 0.00116 (0.00077) | 0.530 | 4 (6) | 37 | |||
КСк 3-7 | 16.9 | 0.329 | 0.655 | 43 | |||||
КСк 3-8 | 20.1 | 0.392 | 0.780 | 49 | |||||
КСк 3-9 | 23.3 | 0.455 | 0.905 | 54 | |||||
КСк 3-10 | 29.7 | 0.581 | 1.155 | 65 | |||||
КСк 3-11 | 86.2 | 1.660 | 0.00221 | 0.00235 | 1.655 | 4 | 163 | ||
КСк 3-12 | 129.9 | 2.488 | 0.00355 | 242 |
Наименование калорифера | Площадь, м² | Длина теплоотдающего элемента (в свету), м | Число ходов по внутреннему теплоносителю | Число рядов | Масса, кг | ||||
---|---|---|---|---|---|---|---|---|---|
поверхности нагрева | фронтального сечения | сечения коллектора | сечения патрубка | живого сечения (средняя) для прохода теплоносителя | |||||
КСк 4-1 | 13.3 | 0.197 | 0.00224 | 0.00101 | 0.00113 | 0.530 | 4 | 4 | 34 |
КСк 4-2 | 16.4 | 0.244 | 0.655 | 38 | |||||
КСк 4-3 | 19.5 | 0.290 | 0.780 | 44 | |||||
КСк 4-4 | 22.6 | 0.337 | 0.905 | 48 | |||||
КСк 4-5 | 28.8 | 0.430 | 1.155 | 59 | |||||
КСк 4-6 | 18.0 | 0.267 | 0.00153 (0.00102) | 0.530 | 4 (6) | 43 | |||
КСк 4-7 | 22.2 | 0.329 | 0.655 | 51 | |||||
КСк 4-8 | 26.4 | 0.392 | 0.780 | 59 | |||||
КСк 4-9 | 30.6 | 0.455 | 0.905 | 65 | |||||
КСк 4-10 | 39.0 | 0.581 | 1.155 | 79 | |||||
КСк 4-11 | 114.2 | 1.660 | 0.00221 | 0.00312 | 1.655 | 4 | 206 | ||
КСк 4-12 | 172.4 | 2.488 | 0.00471 | 307 |
Что делать, если при расчете, мы получаем требуемую площадь сечения, а в таблице для подбора калориферов
КСк, нет моделей с таким показателем. Тогда мы принимаем два или несколько калориферов одного номера,
чтобы сумма их площадей соответствовала или приближалась к нужному значению. Например, при расчете у нас
получилась требуемая площадь сечения – 0.926 м². Воздухонагревателей с таким значением в таблице нет.
Принимаем два теплообменника КСк 3-9 с площадью 0.455 м² (в сумме это дает 0.910 м²) и монтируем их по
воздуху параллельно.
При выборе двух, трех или четырех рядной модели (одинаковые номера калориферов – имеют одну и ту же площадь
фронтального сечения), ориентируемся на то, что теплообменники КСк4 (четыре ряда) при одной и той же входящей
температуре воздуха, графике теплоносителя и производительности по воздуху, нагревают его в среднем на восемь-двенадцать
градусов больше, чем КСк3 (три ряда теплонесущих трубок), на пятнадцать-двадцать градусов больше, чем КСк2
(два ряда теплонесущих трубок), но имеют большее аэродинамическое сопротивление.
Формулы для расчета воздухонагревателя
Расчет нагревателя воздуха (калорифера) для систем вентиляции можно двумя способами: с использованием температур или с использованием энтальпий.
Формула мощности нагревателя, если известны начальная и конечная температуры:
N = 0,338 · G [м3/ч] · (t2 – t1), где
- 0,338 – коэффициент, который учитывает плотность воздуха, его теплоемкость и другие величины;
- G – расход воздуха, выраженный в м3/ч;
- t1, t2 – начальная и конечная температуры воздуха, °С.
Формула мощности нагревателя, если известны начальная и конечная энтальпии:
N = G [м3/ч] · (i2 – i1) / 3, где
- 3 – коэффициент, который учитывает плотность воздуха и перевод часов в секунды и другие величины;
- G – расход воздуха, выраженный в м3/ч;
- i1, i2 – начальная и конечная энтальпии воздуха, кДж/кг.
Расчет мощности нагревателя
Расчет мощности электрического нагревателя
Организация приточно-вытяжной вентиляции помещений требует предварительный нагрев приточного воздуха перед подачей его в помещение.
Электрические нагреватели выпускают для подключения к прямоугольным и круглым вентиляционным каналам. Используют для подогрева приточного воздуха. Электрические нагреватели круглого сечения изготавливают из оцинкованной стали и представляют собой корпус и коммутационную коробку, в которой производится электрическое подключение нагревателя. Нагреватели снабжены термостатами защиты. Автоматический термостат защиты срабатывает при температуре 50 градусов. А второй термостат разрывает цепь при температуре выше 90 градусов и аварийное отключение можно снять только в ручном режиме. Как правило, термостаты подключаются последовательно в систему питания катушки магнитного пускателя. Канальные нагреватели устанавливают после вентилятора с равномерным обдувом ТЭНа. Приточная система вентиляции снабжается воздушным фильтром, который предотвращает загрязнение нагревателя.
Круглые нагреватели выпускают мощностью до 9 киловатт и снабжают нагревательными элементами из нержавеющей стали.
Организация приточно-вытяжной вентиляции помещений требует предварительный нагрев приточного воздуха перед подачей его в помещение.
Таблица минимального расхода воздуха круглых электрических нагревателей
Электрические нагреватели для прямоугольных каналов снабжены также термостатами защиты. Нагреватели оборудованы нагревательными элементами , снабженными дополнительным оребрением, которое увеличивает площадь соприкосновения ТЭНа нагревателя с приточным воздухом.
Таблица минимального расхода воздуха прямоугольных электрических нагревателей
Стоит отметить что прямоугольные нагреватели имеют дополнительное оребрение, что в значительной степени повышает энергоэффективность и теплоемкость особенно при подключении треугольником.
Для очистки воздуха используют воздушные фильтры
Электрический калорифер: особенности эксплуатации
Электрокалориферы сейчас успешно используют для обогрева различных помещений, как жилого, так и хозяйственного и промышленного значения. Учитывая, что источником энергии является электричество, существуют определенные меры безопасности при их эксплуатации. В первую очередь следует исключить наличие паров от взрывоопасных предметов, а также токопроводящей пыли.
В основном электрические калориферы устанавливают в просторных складах, мастерских, залах, гаражных помещениях и сушильных камерах. Предусмотрен их вертикальный и горизонтальный монтаж. Важным условием безопасной эксплуатации является наличие доступа к панели перезагрузки системы в ручном режиме. Особенно популярны воздушные калориферы, которые успешно используют на стройплощадках.
Электрокалориферы значительно ускоряют процесс высыхания различных стройматериалов, в частности штукатурки и краски. Часто их используют для образования тепловой завесы у ворот или дверных конструкций.
Широкий температурный режим эксплуатационых возможностей позволяет использовать его в диапазоне температур от -30 до 50°С. Во избежание перегрева агрегата, следует позаботиться о достаточном воздухопотоке, поэтому предварительно необходимо провести соответствующий расчет. Калорифер при правильном и бережном использовании может прослужить достаточно долго.
Калорифер можно использовать в температурном диапазоне от -30 до 50°С.На заметку! При выборе электрического промышленного калорифера необходимо быть предельно аккуратным и учитывать размеры обслуживаемой площади. Так же необходимо учесть, что чаще всего используются настенные агрегаты, поэтому в целях безопасности необходимо позаботится о надежной их фиксации с использованием специальных кронштейнов.
Расчёт мощности
Процесс нагрева воздуха в виде графика
Методика вычисления заключается в подборе аппарата с такими параметрами, чтобы на выходе температура воздуха соответствовала нормативным значениям, а запас мощности позволял бесперебойно работать при пиковых нагрузках, но при этом не страдала кратность и скорость воздухообмена. Проектировщик начинает рассчитывать мощность только после получения всех исходных данных:
- Объёма воздуха, проходящего через аппарат за единицу времени. Измеряется соответственно кг/ч или м3/ч.
- Температуры приточки. Берётся минимальное значение для зимнего периода.
- Требуемой по нормам или индивидуальным пожеланиям заказчика температуре воздуха на выходе.
- Максимальной температуре, до которой может нагреться тепловой носитель.
Правила вычислений
Теплотехнический расчёт канального нагревателя начинается с определения двух параметров: первый – площадь поперечного сечения тепловой установки; второй – мощность, необходимая для нагрева поверхности заданного размера.
Площадь вычисляется по формуле:
Aф = Lp / 3600×(ϑρ), где
L – максимальное значение приточки для поддержки параметров вытяжки, м3/ч;Р – нормативная плотность воздуха, кг/м3;Θρ – скорость движения воздуха на каждом участке, определяемая из аэродинамического расчета.
Полученное значение подставляется в таблицу, где указаны возможные варианты сечения калориферов, значения округляется в большую сторону.
Таблица подбора по площади сечения
Если результаты вычислений выходят за рамки табличных значений, то проектировщики идут по другому пути: закладывается несколько параллельных канальных нагревателей, суммарная площадь сечений которых равна расчётному значению.
Формула скорости воздушных масс, необходимая для подбора площади нагревательного элемента, следующая:
ϑρ = Lρ / 3600×Аф.факт
На следующем этапе определяется объем тепловой энергии, необходимый для прогрева приточки:
Q = 0.278×Gc× (tп – tн), где
Q – объём тепловой энергии, Вт;G – расчётный показатель расхода воздуха, кг/ч;с – удельная теплоёмкость, в данном случае берётся 1.005 кДж/кг °С;tп – температура приточки, °С;tн – температура воздуха на входе.
Расход воздуха G = Lρн. Это связанно с местом установки вентилятора. Он находится до калорифера, а, следовательно, используется нормативное значение плотности воздушных масс снаружи помещения.
Далее вычисляются затраты горячей воды на отдачу тепла холодному:
Gw = Q / cw×(tг – t0), где
cw – тепловая ёмкость воды, кДж/кг °С;tг – температура теплоносителя (воды),0С;t0 – расчётная температура воды в обратном трубопроводе,0С.
Теплоемкость жидкости можно узнать из справочной литературы. Параметры теплового носителя зависят от параметров среды.
Зная Gw, можно вычислить скорость движения воды по трубам:
w = Gw / 3600×ρw×Aф, где
Aф – размер сечения теплообменника, м²;ρw – плотность воды при средней температуре теплового носителя, 0С.
Средняя температура:
(tг + t0) / 2
Рассчитать скорость движения теплоносителя можно по формуле, указанной выше. Она справедлива для простой системы последовательного подключения нагревательных элементов. В случае использования параллельной схемы, толщина трубопровода увеличится в два или более раз, а средняя скорость движения уменьшится.
Кроме подбора калорифера выполняется расчёт тепловых потерь по укрупнённым показателям. Основная формула:
Qзд=q×V× (tп-tн), где
q – тепловая характеристика объекта, Вт/(м3ּоС);V – объём объекта по внешней стороне ограждающих конструкций, м3;(tп-tн) – разность температуры основных помещений, оС.
Расчёт поверхности нагрева
Основная формула площади нагревательной поверхности канального устройства:
Amp = 1.2Q / K× (tср.т – tср.в), где
К – коэффициент передачи тепла от калорифера холодному воздуху, Вт/(м°С);tср.т – средний показатель температуры теплового носителя, 0С;tср.в – средний показатель температуры приточки, 0С;число 1,2 – коэффициент запас. Вводится в связи с остыванием воздуховодов.
Иногда одного калорифера недостаточно или площадь сечения слишком большая. Тогда в расчёт берётся несколько однотипных устройств.
На последнем этапе определяется, сколько тепла может выдать канальный нагреватель:
Qфакт = К× (tср.т – tср.в)×Nфакт×Ak
Особенность методики для паровых нагревателей
Принцип вычислений не меняется. Отличие только в способе определения расхода теплового носителя для нагрева холодного воздуха:
G = Q / r, где
r – тепловая энергия, получаемая в процессе конденсации пара.
Как делать расчет калорифера вентиляции
В нашем климате в холодное время года крайне важно осуществлять нагрев воздуха, который приходит в дом снаружи через вентиляцию. Если в помещении при вентиляции нет тепло-избытков, то входящий воздух должен подогреваться до той же температуры, что царит внутри помещения. В этом случае система отопления компенсирует потерю теплоты через ограждение
В этом случае система отопления компенсирует потерю теплоты через ограждение
Но в той ситуации, когда отопление комбинируется с приточным видом вентиляции, то приточный воздух должен быть теплее, нежели воздух внутри помещения. Но если в комнате есть теплоизбыток, то входящий воздух должен иметь меньшую температуру, чем воздух, находящийся внутри. Это обеспечит ассимилиляцию тех самых теплоизбытков
В этом случае система отопления компенсирует потерю теплоты через ограждение. Но в той ситуации, когда отопление комбинируется с приточным видом вентиляции, то приточный воздух должен быть теплее, нежели воздух внутри помещения. Но если в комнате есть теплоизбыток, то входящий воздух должен иметь меньшую температуру, чем воздух, находящийся внутри. Это обеспечит ассимилиляцию тех самых теплоизбытков.
Здесь важно, сказать, что температура входящего в помещение воздуха напрямую зависит от способа его подачи. И определяться она должна после расчета приточных струй в зависимости от условий нормируемых параметров воздушной среды. Именно по этой причине важно правильно рассчитать мощность калорифера, который и занимается регулировкой температуры приточного воздуха
Именно по этой причине важно правильно рассчитать мощность калорифера, который и занимается регулировкой температуры приточного воздуха
Именно по этой причине важно правильно рассчитать мощность калорифера, который и занимается регулировкой температуры приточного воздуха. Какие виды калориферов вентиляции существуют?
Какие виды калориферов вентиляции существуют?
Какие виды калориферов вентиляции существуют?
Первым делом важно определиться с видом такого калорифера. Выбирая калорифер нужно учитывать такие нюансы, как его мощность, климат местности, производительность устройства, габариты помещения, в котором он должен быть установлен. Так согласно с этими параметрами можно выбирать между такими видами калориферов:
Так согласно с этими параметрами можно выбирать между такими видами калориферов:
Так согласно с этими параметрами можно выбирать между такими видами калориферов:
- электрокалорифер приточной вентиляции;
- водяной калорифер.
Если говорить об электрических таких приборах, то стоит подчеркнуть, что их конструкция построена на базе переработки электрики в тепло. Это обеспечивается нагревом спирали из проволоки или же металлической нити. Таким образом тепло идет к воздушному потоку. Такие калориферы простые при монтаже, а также они доступны. Но в то же время они потребляют большое количество электроэнергии. Именно по этой причине данный воздухонагреватель лучше всего использовать вместе с рекуператором. Благодаря этому на целую четверть можно уменьшить уровень расходов электричества.
При этом такие водяные устройства для осуществления вентиляции стоят порядком дороже, но она не употребляют столько энергии и, следовательно, обойдутся вам дешевле. Вдобавок его можно даже применять в больших помещениях, так как они обладают высоким уровнем производительности. Из недостатков водяного калорифера можно назвать то, что он может обмерзнуть при очень низких температурах.
Как правильно осуществлять расчет?
Один из нюансов выбора типа калорифера является его расчет. А для того чтобы правильно определить мощность такого устройства вовсе не нужно проводить какие-либо сложные вычисления или манипуляции
Важно просто вычислить температуру воздуха на входе и выходе
В той ситуации, когда снаружи воздух упал к минимальной отметке не на долгий срок, можно не брать во внимание максимальное значение температуры и тогда в расчет можно брать более низкое значение мощности такого устройства
При расчете мощности калорифера вентиляции нужно тоже учесть и дополнительные данные воздухообмена. Этот показатель можно определить, взяв в расчет производительность вентиляции. Затем данные два параметра нужно умножить на теплоемкость воздуха и поделить это значение на тысячу. Сума мощности калорифера должна соответствовать сумме напряжению сети.
Калориферы водяные для приточной вентиляции
Основная область использования калориферов — здания или помещения, в которых по разным причинам не имеется возможности установить радиаторы. Например, при больших объемах помещений радиаторы попросту не справятся напротив, будет наиболее эффективным. Наиболее рациональным расположением водяных калориферов является приточная вентиляционная линия, поскольку нагревать выводимый поток нецелесообразно.
Кроме отопления, активно применяется подогрев приточной струи, используемый для сохранения уже имеющегося тепла в помещении. Если производится транспортировка свежей струи по продолжительной линии воздуховодов, то на них без подогрева воздуха будет накапливаться конденсат, что создаст массу проблем эксплуатационного характера. Для решения всех этих вопросов применяются водяные воздухонагреватели.
Воздухонагреватель водяной: принцип работы и конструкция
Наиболее распространенным типом являются. Они пришли на смену пластинчатым конструкциям, менее удачным в обслуживании и требующим периодического обслуживания в довольно трудоемкой форме.
Смотреть корзину В корзину / Детали
8 100 ₽ОтложитьОтложить Сравнить
Смотреть корзину Детали
Смотреть корзину Детали
Смотреть корзину В корзину / Детали
Нагреватель
Основной элемент нагревателя — стальная трубка, на внешнюю поверхность которой нанесено алюминиевое оребрение. Эти ребра служат теплоотдающей поверхностью, площадь которой в сумме получается достаточно большой. При этом, полный наружный диаметр трубок (вместе с оребрением) составляет 37 мм, а сама трубка — 16 мм, поэтому глубина ребер относительно невелика и не вызывает опасности заполнения грязью, пылью или иными посторонними материалами, снижающими теплоотдачу. Расстояние между ребрами составляет 2,8 мм, что позволяет сохранять тепло даже при интенсивном обдуве, делая работу устройства высокоэффективной.
Трубки
Трубки установлены в плоскую прямоугольную раму в 2, 3 или 4 ряда. Расстояние между осями трубок способствует максимальной теплоотдаче от их поверхности. Подача воздушного потока производится при помощи осевого или радиального вентилятора, это зависит от места установки прибора и специфики его работы.
Установка
Для установки калорифера корпус (рамка) имеет несколько продолговатых монтажных отверстий на фланцевых креплениях. С их помощью приборы могут устанавливаться в систему воздушных каналов, в проемы или иные опорные конструкции. Иногда применяется отдельная установка, когда прибор обслуживает помещение определенного размера и не встроен в общую систему обогрева или вентиляции.
Расчет мощности калорифера
Для правильного расчета калорифера необходимо определиться с исходными данными: производительностью, плотностью воздуха, уличной и желаемой температурой в помещении. Последние показатели чрезвычайно важны, поскольку от них зависит количество тепла, затрачиваемого на нагрев 1 м3 воздуха. Часть данных можно узнать из специальных таблиц.
Расчёт водяного калорифера
Расчет мощности исходя из уличных температур
Чтобы рассчитать площадь сечения водяного калорифера, применяют формулу Аф= L×ρул/3600 (ϑρ). Используются значения:
- L – производительность, которая выражается в м3/ч или кг/ч;
- pул – плотность воздуха на улице по таблице;
- ϑρ – массовая скорость воздуха в сечении.
Получив результат, подбирают для системы вентиляции один калорифер стандартного размера или несколько приборов так, чтобы площадь или сумма площадей были равны или чуть больше расчетного значения.
Массовый расход воздуха в кг/ч вычисляют по формуле G=L×pср:
pср– плотность воздуха при средней температуре.
pср рассчитывают по формуле (tул+tкон)/2:
- tул – уличная температура воздуха в самую холодную пятидневку года;
- tкон – желаемая температура в помещении.
Потом для среднего показателя определяют плотность по таблице.
Вычисляют расход тепла для прогрева воздуха по формуле: Q (Вт) = G×c×(tкон–tул)
Для примера будут рассчитаны данные, если известно:
- L – 10000 м3/ч (производительность указывается в документации);
- tкон – 21°C;
- tул – –25°C.
pср =(–25°C +21°C)/2=–2°C
Плотность воздуха при этой температуре – 1,303.
Массовый расход воздушной массы равен G=10000 м3/ч×1,303 кг/м3=13030кг/ч
Отсюда Q=13030/3600×1011×(21-(-25))=168325 Вт.
К этой величине необходимо добавить 10-15% для запаса мощности.
Паровой калорифер
Мощность парового калорифера определяют тем же способом, только для расчета G используют формулу G=Q/r. r – удельная теплота, образующаяся при конденсации пара в кДж/кг.
Расчет электрокалорифера
Формула расчета мощности калорифера
Для электрических приборов большую часть необходимых данных обычно указывает изготовитель, что значительно упрощает расчет нагрева воздуха и выбор калорифера. Несмотря на относительно низкую тепловую мощность, электрокалориферная система потребляет много электроэнергии, поэтому ее зачастую приходится подключать отдельным кабелем к щитку. Калориферы мощностью более 7 кВт запитывают от сети 380 В.
Потребляемый ток рассчитывают по формуле I=P/U, где P – мощность, а U – напряжение. Значение U зависит от особенностей подключения. Если подключение однофазное, U=220В, если трехфазное, U=660В.
Температуру нагрева рассчитывают по формуле T=2,98×P/L, где L – как и в других расчетах, производительность системы.
https://youtube.com/watch?v=wgb8AloHNx0
Определение гидравлического сопротивления теплоносителя
Расчет гидравлического сопротивления калорифера вычисляется по следующей формуле:
С — значение коэффициента гидравлического сопротивления заданной модели теплообменника (смотреть по таблице) W — скорость движения воды в трубках воздухонагревателя, м/сек.
Нашла все необходимые формулы . Все очень просто и лаконично. Онлайн калькулятор тоже попробовала в действии он работает точно, но поскольку работа требует 100% результата, я еще и перепроверила онлайн-расчеты по формулам. Автору спасибо, но хотелось бы добавить маленькое пожелание. Вы так серьезно подошли к вопросу, что может вам продолжить это благое дело. Например выпустить приложение для смартфона с таким онлайн калькулятором. Бывают ситуации, когда нужно что-то посчитать быстро, и было бы намного удобнее иметь его под рукой. Пока что добавила страницу в закладки и думаю, что она мне понадобиться далеко не раз.
Ну я вполне согласен с автором. Подробно расписал и показал на примерах расчёт мощности и по какой причине лучше его не устанавливать в помещении. В нынешнее время разнообразности разных видов носителей тепла. Калорифер лично я отношу на последнее место. Не очень экономное, так как потребляемость электричества много а вот выхода тепла не очень. Хотя с другой стороны для коптильной в самый раз там не требуется огромная подача горячего воздуха. Так что я согласен. И для себя захотелось рассчитать и вывести среднею оценку.
У меня вопрос. При какой плотности все же производить расчёт мощности калорифера? Особенно в случае суровых погодных условий, когда температура опускается до минус тридцати градусов. Брать среднюю плотность воздуха или саму плотность на выходе наружного воздуха? Выслушал огромное количество вариантов, мнения мягко говоря расходятся. Я бы не ломал голову и высчитал бы по средней плотности, но все же опасаюсь резких морозов. Не уйдёт ли устройство в аварию и не грозит ли перепады температур размораживаю калорифера? Хотелось бы, чтобы вентиляция в холодный период работала без перебоев.
Всегда при расчёте количества тепла, необходимого на вентиляцию, брала плотность наружного воздуха. Эта цифра стоит в одной из граф в характеристике отопительно-вентиляционного оборудования
Только недавно обратила внимание, что фирма при подборе оборудования (в том числе воздухонагревателей) использует плотность внутреннего воздуха и ,соответственно, цифра потребляемой мощности нагрева у них меньше чем моя. При рассмотрении последнего проекта в экспертизе потребовали приложить заказные расчётные листы отопительно-вентиляционного оборудования
Вот будет «веселье», когда придерутся к расхождению в количестве тепла.
Отлично! Это как раз то что мне было нужно! Сложно конечно сразу разобраться, но в целом статья оказалась полезной
В описании рассчетов приводится расчет калорифера при нагревании теплоносителя-воды.А как рассчитать мощность калорифера,если будут нагреваться электрические ТЭНы или просто спираль?Подставлять тогда во все формулы где указана плотность воды ,плотность воздуха что ли?И таблицы плотностей откуда брать то?
Расчет количества вентиляционных решеток
Рассчитывается количество вентрешеток и скорость воздуха в воздуховоде:
1)Задаемся количеством решеток и выбираем из каталога их размеры
2) Зная их количество и расход воздуха, рассчитываем количество воздуха для 1 решетки
3) Рассчитываем скорость выхода воздуха из воздухораспределителя за формулой V= q /S, где q- количество воздуха на одну решетку, а S- площадь воздухораспределителя. Обязательно необходимо ознакомится с нормативной скоростью вытока, и только после того как рассчитанная скорость будет меньше нормативной можно считать , что количество решеток подобрано правильно.
Особенности конструкции приспособления
Основные элементы приточной вентиляции
- Воздухозаборная решетка. Выступает в роли эстетического оформления, и барьера, который защищает мусорных частиц в массах приточного воздуха.
- Клапан приточной вентиляции. Его предназначение — блокирование прохода холодного воздуха извне в зимний период и горячего — в летний. Сделать его работу автоматической можно с помощью электропривода.
- Фильтры. Их предназначение — очистка входящего воздуха. Требую замены каждые 6 месяцев.
- Водяной калорифер, электрические тэны — предназначены для обогрева входящих воздушных масс.
- Для помещений с небольшой площадью рекомендуется использовать вентиляционные системы, с электрическими тэнами, для больших пространств — водяной нагреватель.
Элементы приточно-вытяжной вентиляции
Дополнительные элементы
- Вентиляторы.
- Диффузоры (способствуют распределению масс потока воздуха).
- Глушитель шума.
- Рекуператор.
Конструкция вентиляции напрямую зависит от вида и способа крепления ситемы. Они бывают пассивного и активного действия.
Система отопления с агрегатом для нагрева воздуха
Система обогрева дома, основывающаяся на подаче прогретого до установленной температуры воздуха непосредственно в дом, представляет особый интерес для владельцев собственного жилья.
Такая конструкция отопительной системы состоит из следующих важных узлов:
- калорифера, выступающего в роли теплогенератора, подогревающего воздух;
- каналов (воздуховодов), по которым поступают нагретые воздушные массы в дом;
- вентилятор, направляющий хорошо прогретый воздух по всему объему помещения.
Преимуществ у системы такого типа много. К ним относится и высокий КПД, и отсутствие вспомогательных элементов для теплообмена в виде радиаторов, труб, и возможность объединить ее с климатической системой, и малая инерционность, в результате чего прогрев больших объемов происходит очень быстро.
Галерея изображений
Фото из
Калорифер — нагревательный прибор, предназначенный только для обработки воздушного потока без изменения влажности обрабатываемой массы
Калориферами оснащаются системы воздушного отопления и кондиционирования, осуществляющие подмес свежей порции воздуха с улицы к циркулирующему внутри потоку
В системах воздушного отопления нагреваемый калорифером воздух нагнетается в помещение при помощи вентилятора
Веским плюсом использования калориферов считается их возможность в максимально быстром темпе обогреть большие по площади и объему помещения, в том числе цеха, торговые комплексы, склады
Оборудование для нагревания воздуха
Система кондиционирования с калорифером
Воздушное отопление с калорифером
Быстрый обогрев больших площадей
Для многих домовладельцев недостатком является то, что монтаж системы возможен только одновременно со строительством самого дома и затем дальнейшая модернизация ее невозможна. Минусом является и такой нюанс, как обязательное наличие резервного питания и потребность в регулярном техническом обслуживании.