От чего зависит яркость свечения светодиода и как ее регулировать

Нарушение основных этапов сборки

В гонке за клиентами, среди большой конкуренции, китайские компании-производители не особо следят и контролируют процесс сборки устройства. Это послужило возникновению еще одной причины деградации светодиодов — из-за некачественной сборки осветительных приборов. В этом случае компании-производители работают по простому принципу – главное не качество, а количество. И как результат, светодиодная лампа служит потребителям намного меньше, чем указано в технических характеристиках LED ламп.

Однако сложно определить, почему светодиод плохо работает и ухудшает свои свойства, какие факторы на это влияют. Деградация может быть различной.

Диод помещается в корпус, у которого характеристики и свойства значительно уступают по качеству. Однако такая светодиодная лампа полностью соответствует всем техническим характеристикам, поэтому изначально считается годной. Ее яркость, цветовая температура, напряжение и прочие параметры соответствуют данным, что прописаны в спецификации производителя. А так как закупочная цена у таких осветительных элементов низкая и доступная, то их закупают многие импортеры. Однако срок службы у таких источников света на порядок меньше того срока, что указан в паспорте и составляет всего лишь несколько сотен часов вместо нескольких тысяч. Этот факт подтвердился в ходе испытаний и эксплуатации компонентов.

Улучшить эффективность диодов и соответственно отдалить процесс их деградации можно несколькими вариантами. Например, повысить качество используемого материала, модифицировать структуру и построение самого чипа, а также технологию его образования. Также при тестировании поверхности можно добиться эффективности в качественной работе LED компонентов.

Что такое яркость светодиода и в чем она измеряется

Яркостью свечения называют показатель света, равный соотношению силы светового потока к косинусу угла, под которым он излучается, и освещаемой площади. Другое определение – освещенность в точке, перпендикулярной к источнику, к углу, в который заключен луч. Яркость свечения обозначается буквой «L», измеряется в милликанделах на метр в минус второй степени (кд*м-2). У обычных светодиодов яркость 20-50 мкд, у сверхярких – до 20 000 мкд. От этого показателя зависит восприятие предметов глазами человека.

Если говорить о светодиодах, то у них яркость свечения – это мощность (сила) света, измеряемая в ваттах и зависящая от угла конуса, основание которого расположено на освещаемой площади, вершина – в источнике света. При равном излучении во всех направлениях яркость свечения будет соотношением потока к прострaнcтвенному углу (в градусах). Чаще всего градусы переводятся в стерадианы: sr = 2 π (1 – cos θ/2), где θ – угол луча.

Выбор и последние советы

Учитывайте габариты своего плафона в светильнике и общие размеры колбы. Длина и диаметр лампочки должны быть указаны на коробке. Тип цоколя должен совпадать с маркировкой патрона.
Чтобы посчитать время, за которое окупится лампочки, надо знать её время работы в сутки, мощность, цену и стоимость 1кВт энергии для дома. Умножьте количество дней в месяце на среднее время функционирования лампы. Результат перемножьте с мощностью, а потом со стоимостью 1кВт. К числу прибавляется стоимость лампочки. Такой же расчёт надо провести с предыдущей лампой. Итоговую сумму затрат светодиодной лампочки надо разделить на разницу между затратами двух ламп. В итоге получится число месяцев для полной окупаемости.
Выбрать светодиодные лампочки стоит ещё и потому, что они светят даже после коротких замыканий. Сетевые перегрузки тоже не должны являться причиной затухания качественной лампы на светодиодах. Дело в том, что её мощность выступает неким предохранителем от нагрузки. Поэтому если лампочка вышла из строя и продавец не хочет её принимать по причине сбоев вашей сети, продолжайте настаивать на своём и требовать замены.
Для спальни лучше всего подходит рассеивающий свет. Комфортную обстановку создают светильники без тёмных пятен

В первую очередь, нужно обращать внимание на цветовую температуру лампочки, так как для спальни подойдут модели с показателем до 3200К. Для любителей необычного дизайна и формы подойдут лампочки компании Gauss.
На кухне светодиодные лампочки позволяют быстро осуществить процедуру зонирования

Ими подсвечивают обеденный стол, гарнитур, плиту. Зону приёма пищи лучше освещать лампами с мягким белым оттенком, а рабочую столешницу – холодным светом лампочки.
Светодиодные лампы для гостиной обязательно должны иметь радиатор. Цветовая температура выбирается в зависимости от задачи источника света. Он может привносить нотку гостеприимства или говорить о презентабельности дома.
Для рабочего стола потребуются лампочки дневного света с показателем 3200-4500К. Обязательно такие лампы должны иметь хороший блок питания. Будет лучше, если вы приобретёте его вместе с лампочкой или хотя бы уточните совместимость заранее. Коэффициент мощности блока должен быть как минимум 0,9.

Схемы подключения

Существует несколько схем подключения для димминирования освещения. Каждая будет описана с принципом подключения и возможного назначения.

Без выключателя

Это самая простая схема, которая позволяет заменить выключатель на диммер.

Для ее подключения необходимо:

  1. Демонтировать выключатель.
  2. При помощи индикатора найти фазный провод.
  3. Найденный провод подключить к клемме диммера, обозначающийся волнистой линией.
  4. Второй провод, идущий на лампу, подключить к клемме «L» на подключаемом устройстве.
  5. Установить прибор на стену.
  6. Включить электропитание.

Теперь диммер будет использоваться вместо выключателя. Основная особенность схемы – это простота подключения, без необходимости монтажа дополнительной проводки.

С выключателем

Эта модель использует диммер в качестве проходного устройства. Например, если выключатель вмонтирован в начале схемы, а сам диммер в дальнем конце комнаты. Проходной диммер в схеме подключения используется для регулировки и выключения, а выключатель только по прямому назначению. Для подключения необходимо:

  1. Фазный провод от распределительной коробки подать на выключатель.
  2. С выключателя провод подключается к вводному контакту диммера.
  3. Выход «L» на регуляторе подсоединяется к источнику освещения.
  4. Нулевой провод идет прямо от распределительной коробки к лампе.

В этой схеме димминирование проводится при помощи обычного 2-х контактного регулятора на переменном резисторе.

Проходная схема

В этой схеме можно использовать сразу 2 регулятора. Подобное подключение можно осуществить только при прокладке электропроводки. Уже проложенная простая цепь, с одним выключателем, не подойдет. Также понадобится приобрести 2 трех контактных устройства регулировки. Цепь следующая:

  1. В распределительной коробке необходимо найти провод фазы.
  2. Этот провод подается на вводную клемму диммера, отмеченную значком в виде волны и поперечной стрелочки.
  3. С клеммы «L» диммера проводится провод на ту же клемму, только на втором регуляторе.
  4. Такая же перемычка подается с клеммы «1» на тот же контакт второго устройства.
  5. С контакта второго диммера в виде волны и поперечной стрелочки, подается выход фазного провода на лампу.
  6. Из распределительной коробки, нулевой провод проводится прямо на источник освещения.

Теперь регулировать накал ламп можно из двух точек комнаты. Также можно включать и выключать лампу.

Для подключения любого регулятора очень важно использовать провод фазы. Для этого цепь подключения освещения должна быть собрана правильно, то есть фаза должна идти обязательно через выключатель

Подобная цепь позволит безопасно осуществлять монтаж диммера и замену ламп. При подключении сенсорных моделей нужно учитывать необходимость ввода нулевого провода. Особенно это касается устройств с удаленным управлением. Для таких приборов необходимо сначала подготовить проводку, или полностью сменить принципиальную схему освещения.

Существуют отдельные модели устройств для диммиромания светодиодных лент и ламп, работающих через «драйвер». Схема подключения таких диммеров отличается

Важно учитывать следующее:

  1. Если светодиодная лента работает от блока питания с постоянным током, диммер должен быть обязательно подключен в цепь, между лентой и блоком.
  2. Если LED-лампа работает от «драйвера», то регулятор подключается перед этим устройством.

В остальном, приведенные схемы подключения диммера, могут использоваться для светодиодного освещения. Главное выбрать подходящую модель регулятора. Запрещено подключать к светодиодной ленте или нескольким лампам диммер от гирлянд. Подобные приборы рассчитаны на определенное количество светодиодов. Без предварительного расчета, цепь может подвергнуться короткому замыканию.

Также стоит учитывать маркировку. Часто информацию о подходящих регуляторах и их мощности, можно найти на упаковке или корпусе «драйвера».

За счет чего светодиоды меняют цвет?

Почему светодиоды, при изменении напряжения, меняют цвет?

Чтобы разобраться, за счет чего, в результате каких факторов внешнего и внутреннего воздействия, светодиоды меняют цвет, необходимо разобраться с общим устройством этого полупроводникового прибора. Оказывается, что изменение цветового спектра при свечении светодиода, независимо от типа и конструкции, происходит в результате изменения параметров напряжения. Оказывается, что под таким воздействием даже самый обыкновенный светодиод (например, оранжевый) изменит цвет по мере увеличения напряжения в сети. Сначала это будет желтый, затем светло-зеленый тон, а далее диод попросту перегорит.

Схема подключения диммера к светодиодной ленте

На фото ниже представлена схема подключения своими руками классического диммера к обычным светодиодам. В готовых решениях, которые можно купить в любом светотехническом магазине, необходимо просто подключить провода к имеющимся разъемам.

Подключение поворотного диммера к светодиодам

Стоит учесть, что вышеуказанная схема справедлива для светодиодной ленты, которая может светить только одним цветом (например, белым). Дело в том, что для каждого цвета необходим свой набор диммирующих схем, соответственно, и само устройство должно поддерживать подключение и регулировку многоцветных лент (они же RGB). Смысл работы такого светового диммера абсолютно идентичен обычному, разница только в расширенном наборе регуляторов.

Подключение светодиодной RGB-ленты

Дополнительно в такую систему подключается RGB-контроллер, без которого регулирование различных цветов будет невозможно. Таким образом, с помощью диммера можно своими руками либо автоматически создать любой цвет и его оттенок, что широко используется в декоративных целях. При включении всех трех цветов на максимально доступной мощности получается белый свет, который может использоваться в качестве дополнительного или даже основного освещения.

Устройство LED-ламп

Прежде всего, давай разберемся, что такое светодиодная лампочка и как она светит. В 1907 году британец Генри Раунд заметил, что полупроводниковый диод под действием электрического тока при некоторых условиях начинает излучать видимый свет. И хотя до применения этого эффекта на практике понадобилось более 60 лет, начало было положено. Сегодня технология производства сверхъярких диодов отлично отлажена, а световой поток полупроводников настолько велик, что диоды вполне в состоянии заменить обычные осветительные лампочки.

Конечно, мощности светового потока одного полупроводника недостаточно для освещения, скажем, комнаты, но эту проблему легко обойти, собрав «лампочку» из нескольких светодиодов. Конструкторы даже пошли дальше – они не стали снабжать каждый полупроводник своим корпусом, а поместили на одну подложку сразу несколько кристаллов. Такие сборки стали называть матрицами:

Как ты наверняка заметил, глядя на фото выше, и отдельные диоды, и матрицы имеют одну особенность – их световой поток направлен в одну сторону. Это очень удобно для сборки направленных осветительных приборов, к примеру, прожекторов, но мало подходит для приборов рассеянного света. Зачем тебе лампочка-прожектор, скажем, в люстре? Как конструкторы обошли эту проблему, я думаю, ты уже догадался: они просто расположили полупроводники под разными углами, направив световые потоки каждого прибора в определенную сторону.

Световой поток этих светодиодных ламп направлен практически во все стороны

Несмотря на то, что светоизлучающие диоды обладают очень высоким КПД, какая-то часть энергии все равно расходуется на тепло. Если мощность осветителя невелика, то в этом нет ничего страшного. Но для освещения того же помещения светового потока лампочки мощностью в ватт явно недостаточно. Поэтому практически все светодиодные осветители имеют в своем составе радиатор – металлическую ребристую пластину, отводящую тепло от кристаллов и отдающую его в воздух. В некоторых конструкциях радиатор находится внутри корпуса, в других его можно увидеть снаружи. То же самое касается и любых других осветительных устройств, работающих на полупроводниках, – они тоже имеют в своем составе радиатор.

И последний немаловажный штрих – питание. Диоды питаются постоянным и относительно невысоким напряжением, поэтому подключить их напрямую к обычной розетке не получится. Прежде чем подать напряжение  на кристалл, его нужно понизить и выпрямить (сделать постоянным). Эту задачу исполняет специальный блок – контроллер питания или драйвер. Обычно драйвер уже встроен в осветитель или лампочку, поэтому многие о существовании этого достаточно сложного электронного узла даже не подозревают.

Драйверы питания диодной лампочки (слева) и светодиодного прожектора

Кроме вышеуказанных функций, драйвер следит за током через диоды и защищает их от случайных бросков и колебаний напряжения.

Готовые к использованию регуляторы яркости

Регулятор, который продается в готовом виде для светодиодных ламп, называются диммером. Частота импульсов, создавая им, достаточно велика для того, чтобы мы не чувствовали мерцания. Благодаря ШИМ контролеру осуществляется плавная регулировка, позволяющая добиваться максимальной яркости свечения или угасания лампы.

Встраивая такой диммер в стену, можно пользоваться им, как обычным выключателем. Для исключительно удобства регулятор яркости светодиодов может управляться радио пультом.

Способность ламп, созданных на основе светодиодов, менять свою яркость открывает большие возможности для проведения световых шоу, создания красивой уличной подсветки. Да и обычным карманным фонариком становится значительно удобнее пользоваться, если есть возможность регулировать интенсивность его свечения.

Источник



Особенности конструкции цоколей G9

У всех моделей, маркированных буквой G, штырьки представляют собой прямые тонкие или толстые проволоки. Особенностью цоколей G9 является то, что этот элемент у них загнут в петли. Такая форма позволяет удерживать лампу в патроне еще надежнее. Цоколь G9 размеры, в зависимости от конструкции, может иметь абсолютно разные.

Особое строение имеет обычно и сама колба таких ламп. Помимо всего прочего, она оснащается специальным отражателем, позволяющим получать направленный поток света. Смонтированы осветительные элементы таких лампочек могут быть на одно- или двухсторонних платах (Т либо П-образных). Некоторые модели светодиодов могут состоять из расположенных по кругу параллельных линеек. Иногда оборудование этого типа декорируется также стеклом, меняющим цветопередачу.

Напряжение питания у ламп G9 всегда 220 В. К колебаниям в сети такие конструкции относительно нечувствительны. Допустимый диапазон скачков напряжения для цоколей этой разновидности составляет обычно 165-240 В. Поставляться цоколь G9 220V в специализированные магазины может как с радиатором охлаждения, так и без него.

Характеристики SMDLED, их маркировки и области применения

Такие светодиоды в наше время используются повсеместно. Это не только бытовые и производственные помещения, но и автомобильная промышленность, различная цветомузыка и рекламные щиты. Если посмотреть на любой SMD-компонент, с первого взгляда непонятно, как одинтип отличить от другого. На самом деле это не сложно.

Глядя на маркировку такого светодиода можно сразу узнать его типоразмер, а зная их характеристики несложно высчитать и мощность, к примеру, световой полосы, на которой они установлены. Рассмотрим наиболее распространенные элементы, встречающиеся на российских прилавках.

Ассортимент SMD-светодиодов – это лишь их малая часть

Параметры 2835SMDLED

Для начала необходимо понять, как определить размер по маркировке светодиодов. Все очень просто, если указаны цифры 2835, значит, размер элемента составит 2,8×3.,5мм. Характеристики светодиода 2835 неплохи. Светоотдача такого светового диода составляет 20-24 Люмен, а площадь излучения можно отнести к увеличенной. Интересен и показатель деградации. При 3000 часах работы при температуре в 2400 К такой элемент теряет всего 5% силы светового потока.

Вот она, лента со светодиодами 2835

Характеристики светодиода 5050

Этот элемент имеет более крупные габариты. Однако это не означает, что его световой поток более сильный, нежели у предыдущего варианта. В его корпусе объединены 3 кристалла, аналогичных SMD 3528 (не стоит его путать с 2835 – они совершенно разные). К примеру, если светоотдача 2835 равна 20-24 Лм, то у 3528 этот показатель всего 6-8 Лм. Но, вернемся к SMD 5050. Его мощность составляет 0,2 Вт, а сила светового потока – 16-18 Лм.

А вот светодиод 5050 чаще используется для таких лампочек

Характеристики светодиодов SMD 5730

Это уже элемент, имеющий более хорошие показатели. Он намного ярче предыдущих, но и потребление его выше. По маркировке понятно, что его размеры – 5.7×3мм. Сила светового потока равна 50Лм при потребляемой мощности 0.6Вт. Сейчас появилось новое поколение таких светодиодов, мощность которых составляет 1Вт. Их маркировка уже выглядит как SMD5730-1.

Максимальная рабочая температура этих элементов 1200 К. При работе в такой температуре в течение 3000 часов деградация элемента составит лишь 1%.

Светодиод 5730 мощнее предыдущих элементов

Новое слово в линейке SMDLED – элементы «Cree»

Эти светодиоды совершенно отличны от моделей, которые нами сегодня рассматривались и превосходят их по многим параметрам. В их линейке несколько модельных рядов, среди которых можно отметить сверхъяркие светодиоды на 3 вольта XQ-E HighIntensity, имеющие достаточно малые размеры – 1,6×1,6 мм. Угол свечения составляет 100-1500, а сила светового потока – 330 Лм. При этом светодиод содержит лишь один кристалл.

Самым маленьким из «Cree» второго поколения, названные производителем «High-Brightness» — это светодиод XHP35, характеристики которого просто поражают. При размерах 3,45×3,45 мм и необходимом напряжении 11-12 В этот элемент вырабатывает силу светового потока свыше 1000 Лм.

О мощности светодиода «Cree» уже ходят легенды

Действительно, характеристики светодиодов «Cree» впечатляют. Компания устанавливает эти элементы на различное оборудование, включая и прожектора на парковках и осветительные приборы на стенах зданий и сооружений. Но интересно и то, что характеристики светодиодов для фонариков ненамного уступают тем, что устанавливаются на уличное освещение.

Как определить ток

Узнать о том, какой номинальный ток имеет светодиод, не используя специальных справочников, не так просто. По внешнему виду, силу тока можно определить по колбе диода: чем она больше, тем больше ток. Если во время проверки вы пересекаете допустимую черту, цвет диода изменится. Например, изначально жёлтый цвет может перейти в белый или синий оттенок.

Современные технологии позволяют дополнять корпус прибора новыми комплектующими. Чаще всего используются гасящие резисторы. Таким способом можно получить светодиод с напряжением 5,12 или 220 В.

Помимо этого, номинальный ток светодиода определяется тем же мультиметром

Когда лампочка загорится, обратите внимание на экран прибора, на нём будет отображено напряжение, зная его и закон Ома, можно без проблем вычислить ток светодиода

Посмотрев видео можно понять, как проверить различные типы светодиодов при помощи мультиметра.

Исходный код программы

Arduino

int pwmPin = 2; // на pin 2 мы будем формировать ШИМ сигнал
int pot = A0; // с контакта A0 мы будем считывать аналоговое значение напряжения
int c1 = 0; // объявляем переменную c1
int c2 = 0; // объявляем переменную c2
void setup() // setup loop
{
pinMode(pwmPin, OUTPUT);
pinMode(pot, INPUT);
Serial.begin(9600);
}
void loop()
{
int value = analogRead(pot);
Serial.println(value);
c1= value;
c2= 500-c1; // вычитаем c1 из 500 и результат сохраняем в c2

if (value < 500)
{
digitalWrite(pwmPin, HIGH);
delayMicroseconds(c2);
digitalWrite(pwmPin, LOW);
delayMicroseconds(c1);
}
if (value > 500) // если светло – выключаем светодиод
{
digitalWrite(2,LOW);
}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

intpwmPin=2;// на pin 2 мы будем формировать ШИМ сигнал

intpot=A0;// с контакта A0 мы будем считывать аналоговое значение напряжения

intc1=;// объявляем переменную c1

intc2=;// объявляем переменную c2

voidsetup()// setup loop

{

pinMode(pwmPin,OUTPUT);

pinMode(pot,INPUT);

Serial.begin(9600);

}

voidloop()

{

intvalue=analogRead(pot);

Serial.println(value);

c1=value;

c2=500-c1;// вычитаем c1 из 500 и результат сохраняем в c2

if(value<500)

{

digitalWrite(pwmPin,HIGH);

delayMicroseconds(c2);

digitalWrite(pwmPin,LOW);

delayMicroseconds(c1);

}

if(value>500)// если светло – выключаем светодиод

{

digitalWrite(2,LOW);

}

}

Основные принципы формирования цвета с использованием светодиодов

Полезно будет вспомнить, что любой цвет и оттенок, формируется за счет трех основных цветов:

  1. Красный.
  2. Зеленый.
  3. Синий.

Комбинируя параметры этих трех цветов можно легко получать практически любые оттенки. Главное – правильно подбирать пропорции.

Исходя из этого параметра, чтобы любой световой прибор имел возможность менять цвета и оттенки, он должен иметь не менее трех источников света. Фактически, так оно и есть. Любой RGB-светодиод, это не что иное, как три излучающих кристалла, заключенных в едином корпусе.

Управление и контроль работы такого светодиода осуществляется за счет использования контроллера. Каждый светодиод, меняющий цвет, оснащен таким контроллером. Это устройство управляет каждым отдельным цветом.

DALI

Цифровой протокол, поддерживаемый большинством производителей профессионального осветительного оборудования. Его главное преимущество — это цифровая шина, объединяющая все диммируемые светодиодные светильники в единую систему. Включение, выключение и регулировка яркости осуществляются за счёт сигнальных команд, а не за счёт размыкания питающей цепи. Такой подход позволяет в любое время переназначать, какой выключатель за какой светильник отвечает.

Но самым главным преимуществом цифрового протокола DALI является возможность программирования сцен с их последующим сохранением в памяти. Это полностью переворачивает представление об управлении освещением. Обычная клавиша выключателя может теперь не просто управлять светильником, а задавать режим работы для целой группы.

Из недостатков протокола DALI можно выделить разве что высокую стоимость и необходимость предварительной настройки системы управления.

Классический подход: выключатель для групп светилльников.
Современный подход: выбор настроенных сцен освещения.

Некоторые вопросы методов компенсации ухода параметров светодиодов

Изучение всего комплекса температурных зависимостей параметров светодиодов не может не натолкнуть на поиск способов компенсации уходов этих параметров. Существует два основных пути построения системы учета и смягчения последствий температурных изменений. Первый — непосредственно влияющий на физические условия работы светодиодов. Это может быть некая термостабилизация окружающей среды, применение различных комбинаций вентиляции, радиаторов конвекционного охлаждения и, наоборот, подогрев при отрицательных температурах. Однако точно реализовать поддержание температуры в соответствии с приведенными зависимостями светодиодов этими средствами довольно затруднительно, хотя, если не требуется выполнения слишком жестких условий, то наиболее доступно и легко реализуемо. Второй способ касается в основном программно управляемых источников, таких как табло, бегущие строки, полноцветные экраны на светодиодах, где очень заметно любое, даже самое незначительное изменение характеристики светового излучения. Здесь температурные уходы очень эффективно отслеживаются с применением математического аппарата управляющего программного обеспечения, когда в зависимости от температуры в зоне работы светодиодов, регистрируемой термодатчиком, например, изменяется модуляционная характеристика светодиода. Так, при понижении температуры с целью сохранения заданной яркости табло на прежнем уровне возможно уменьшение времени зажженного состояния светодиода (при управлении широтно-импульсным способом) пропорционально зависимостям, показанным на рис. 16 (см. «КиТ»№9’2005, с. 53).

Введя в программу обработки данных формирования изображения указанные характеристики по разным цветам, можно добиться стабильной яркости полотна табло при большом разбросе температур окружающей среды. Дальнейшим совершенствованием такого аппарата коррекции может быть и учет цветовых характеристик. Для этого потребуется вводить в программу еще и алгоритм вычисления необходимых соотношений для интенсивностей свечения основных цветов при изменении температуры по формуле (7), сохраняя баланс белого независимо от температурного изменения их спектрального состава, показанного на рис. 17 и в таблице 1. Также, если позволяет система управления, можно воспользоваться не только функцией изменения времени включенного состояния, но и изменить значение тока Iƒ в импульсе. Возможно, именно в таком варианте найдется оптимальный режим компенсации уходов параметров в широком диапазоне температур окружающей среды.

Автор выражает особую благодарность за организацию и поддержку экспериментов:

  • Владимиру Семеновичу Абрамову, к. т. н.;
  • Петру Павловичу Аникину, к. ф-м. н.;
  • Валерию Петровичу Сушкову, д. т. н.

Возможности и применение

Изобретение первых светодиодов – полупроводниковых диодов в
эпоксидной оболочке, выделяющих монохроматический свет при подключении
к электротоку – относится к 1960-м годам. Однако до 1980-х низкая
яркость, отсутствие светодиодов синего и белого цветов, а также высокие
затраты на их производство ограничивали их массовое применение в
качестве источников света. Поэтому светодиоды в основном использовали в
наружных электронных табло, ими оборудовали системы регулирования
дорожного движения, применяли в оптоволоконных системах передачи данных
и медицинском оборудовании.

Появление сверх ярких, а также синих (в середине 1990-х годов)
и
белых диодов (в начале XXI века) и постоянное снижение их рыночной
стоимости привлекли внимание многих производителей к данным источникам
света. Светодиоды стали использовать в качестве индикаторов режимов
работы электронных устройств, в подсветке жидкокристаллических экранов
различных приборов, в том числе – мобильных телефонов и пр.
Впоследствии применение светодиодов основных цветов (красного, синего и
зеленого) позволило получать цвета вывесок фактически любых оттенков, а
также конструировать из них дисплеи с выводом полноцветной графики и
анимации

 
Светодиоды, за счет их малой
потребности в электроэнергии, – оптимальный выбор декоративного
освещения в местах, где существуют проблемы с энергетикой.

Срок службы светодиодов, превышающий в 6-8 раз долговечность
люминесцентных ламп, относительная простота в работе с ними на этапе
сборки изделий, отсутствие необходимости в регулярном обслуживании и их
антивандальные качества делают эти источники света конкурентоспособными
с более традиционными -газоразрядными, люминесцентными лампами и
лампами накаливания. Одним из немногих и существенных аспектов, за счет
которого неон удерживает свои позиции в сегменте подсветки вывесок,
является пока еще более высокая стоимость светодиодов.

Какие бывают светодиоды

Светодиод (обозначается СД, СИД, LED в англ.) представляет собой прибор, в основе которого лежит искусственный полупроводниковый кристаллик. При пропускании через него электротока создается явление испускания фотонов, что приводит к свечению. Данное свечение имеет очень узкий диапазон спектра, и цвет его находится в зависимости от материала полупроводника.

Светодиоды вполне могут заменить обычные лампы накаливания

Светодиоды с красным и желтым свечением производят из неорганических полупроводниковых материалов на базе арсенида галлия, зеленые и синие изготавливают на основе индия-галлия-нитрида. Чтобы увеличить яркость светового потока используют различные присадки или применяют метод многослойности, когда слой чистого нитрида алюминия размещают между полупроводниками. В результате образования в одном кристаллике нескольких электронно-дырочных (p-n) переходов, яркость его свечения возрастает.

Различают два типа светодиодов: для индикации и освещения. Первые используют для индикации включения в сеть различных приборов, а также как источники декоративной подсветки. Они представляют собой цветные диоды, помещенные в просвечивающийся корпус, каждый из них имеет четыре вывода. Приборы, излучающие инфракрасный свет, используют в устройствах для удаленного управления приборами (пульт ДУ).

В области освещения используют светодиоды, излучающие белый свет. По цвету различают светодиоды с холодным белым, нейтральным белым и теплым белым свечением. Существует классификация применяемых для освещения светодиодов по способу монтажа. Маркировка светодиода SMD означает, что прибор состоит из алюминиевой или медной подложки, на которой размещен кристаллик диода. Сама подложка располагается в корпусе, контакты которого соединены с контактами светодиода.

Применение светодиодной подсветки в интерьере кухни

Другой тип светодиодов обозначается OCB. В таком приборе на одной плате размещается множество кристаллов, покрытых люминофором. Благодаря такой конструкции достигается большая яркость свечения. Такую технологию используют при производстве светодиодных ламп с большим световым потоком на относительно малой площади. В свою очередь это делает производство светодиодных ламп наиболее доступным и недорогим.

Цветовая маркировка световых диодов

С одной стороны, цветовая маркировка позволяет определить вид и характеристики светодиода, с другой – единых обозначений не существует. Каждый производитель использует свои значения. В России есть цветовая маркировка, но ее редко используют – список элементов из цифр и букв слишком большой, запомнить достаточно сложно, расшифровка неудобна для обычного покупателя.

Более простое буквенное обозначение принимают за общепринятое (неофициально). Используют в основном для светодиодных лент. Кроме общих характеристик указывают степень защиты элемента от проникновения мусора и влаги – IP и цифры от 0 до 6.

Чтобы выбрать хороший вариант для замены устаревших лампочек, необходимо выяснить, какие бывают светодиоды, и установить параметры подключаемой электрической сети: соответствие напряжения, силы тока, сопротивления.

На сколько вольт бывают

Рабочее напряжение светодиода можно определить не только по его внешнему виду и характеристикам, но и по цветовому свечению LED. Для этого, ознакомьтесь с таблицей ниже.

Цвет LED

Напряжение, В

Красный1,63 ― 2,03
Жёлтый2,1 ― 2,18
Зелёный1,9 ― 4,0
Синий2,48 ― 3,7
Оранжевый2,03 ― 2,1
Инфракрасныйдо 1,9
Фиолетовый2,76 ― 4
Белый3,5
Ультрафиолетовый3,1 ― 4,4

Как цвет влияет на яркость

Для понимания этого аспекта, следует узнать, что происходит внутри диода и что влияет на тип цвета.

Внутреннее устройство полупроводникового LED — это два полупроводника, рассчитанные на разный уровень проводимости. Электрический ток по первому полупроводнику проходит за счёт физического явления, обеспечивающее перемещение свободных электронов. По второму проводнику ток движется благодаря перемещению «дырок».

В месте соединения полупроводников начинается этап рекомбинации «дырок» и электронов. На место «дырки» прилетает электрон, который делает атом нейтральным ― происходит излучение фотона, то есть появляется цвет.

Цвет способен изменяться, если на него влияют следующие факторы:

  • из какого типа полупроводника изготавливался светодиод;
  • какие примеси были использованы в местах контакта двух полупроводников;
  • ширина запретной зоны (место рекомбинации);
  • параметры и величина, оказывающие влияние на силу тока на участке электрической цепи.

Изменение цвета происходит за счёт увеличения или уменьшения электрического тока. Обращаясь к закону Ома, необходимо помнить, что чем больше напряжение, тем больше сила тока. Это означает, что энергия фотона будет также увеличиваться, тем самым приближаясь к более холодному (синему) и яркому свечению.

Принцип работы проекта

Как можно видеть из представленной выше схемы, мы использовали делитель напряжения, состоящий из фоторезистора и резистора сопротивлением 100 кОм. Выход делителя напряжения подключен к аналоговому входу Arduino – с выхода его АЦП мы считываем значение напряжения. Из-за изменений условий освещенности сопротивление фоторезистора уменьшается, следовательно, изменяется и значение напряжения на аналоговом входе Arduino. Если вокруг темно, то сопротивление фоторезистора велико, следовательно напряжение на аналоговом входе Arduino мало. Это полученное значение напряжения мы затем преобразуем в коэффициент заполнения ШИМ, который непосредственным образом влияет на яркость свечения светодиода. Принцип работы нашей схемы можно пояснить с помощью следующей условной диаграммы:

Если вокруг достаточно светло и значение на выходе АЦП аналогового входа Arduino более 500, то мы выключаем светодиод.

Также на нашем сайте вы можете посмотреть все проекты, в которых был использован фоторезистор.

Основные выводы

Измерить интенсивность свечения светодиода в домашних условиях невозможно. Этот показатель редко указывается в маркировке, для правильного выбора необходимо знать его зависимость от размеров кристалла, потока света и угла излучения.

Возможность менять яркость (использовать диммирование) широко используется в быту для экономии электроэнергии и устройства специальных систем освещения. Интенсивность свечения можно уменьшить при просмотре телевизионных программ, во время отдыха, для ночного освещения детских комнат. Удобство использования повышает возможность управления диммированием при помощи пульта управления или автоматически (с учетом движения и времени).

Поделитесь в социальных сетях:FacebookX
Напишите комментарий