Красота и функциональность лампы «свеча на ветру»

Где применяются?

Светодиодные лампы производятся разных форм. Это позволяет противопоставить их стандартным лампам накаливания, поскольку дает больший простор для творчества.

В некоторых случаях они просто незаменимы. Речь идет о светодиодных лампах-свечах, без которых немыслимо существование люстры в виде подсвечника.

Когда-то подвесные люстры с горящими свечами были роскошью. Сегодня ни один здравомыслящий человек не повесит у себя дома люстру с открытым огнем. Тем более что это ни к чему, ведь лампы-свечи прекрасно имитируют мерцающий огонь.

Лампочки имеют удлиненную изогнутую форму, напоминающую язычок пламени настоящей свечи. Декоративная лампочка в форме свечи на ветру является одним из наиболее популярных изделий. Без нее вид потолочной люстры кажется незавершенным. Ее невозможно дополнить обычной лампочкой. Они не имеют абажуров и просто будут выглядеть небрежно, в то время как смотрелись бы невероятно стильно с лампочками-свечами.

Лампы с эффектом пламени привлекают многих владельцев домов. Надо отметить, что светодиоды могут быть разных цветов, ведь их же используют, чтобы подсвечивать, например, новогодние гирлянды. Можно выбрать свечи белого, оранжевого, желтого оттенка и других.

Проверяйте пульсацию при покупке

При покупке филаментной лампы важно проверить пульсацию. Игнорирование этого требования может привести к разочарованию при использовании девайса в качестве основного освещения в спальне, зале или другом помещении. По законам РФ (ПП №1356 от 10.10.2017 г

«Об утверждении требований к осветительным приборам») запрещена продажа источников света пульсацией свыше 10% и CRI меньше 80

По законам РФ (ПП №1356 от 10.10.2017 г. «Об утверждении требований к осветительным приборам») запрещена продажа источников света пульсацией свыше 10% и CRI меньше 80.

За пульсацию отвечает драйвер и в качественных изделиях этот показатель не превышает 1%.

И нужно помнить, что внутри даже одинаковых по форме лампочек может быть два разных драйвера. Один с нормальной пульсацией и качественными деталями, а второй — изготовленный с применением дешевых элементов.

Охлаждение

Существует ложное заблуждение, что светодиоды не греются. Наоборот, они нагреваются сильно, а некоторые микросхемы не работают и нескольких минут без охлаждения.

У небольших светодиодов, находящихся в корпусах SMD-типа, тепло передается к установленным через них контактных площадках.

Мы уже знаем, что один филамент потребляет в среднем 1 Вт. Для сравнения в SMD-диодах на 1 Вт мощности конструктивно предусматривается около 25-30 кв. см охладительного устройства. И здесь возникает вопрос по поводу охлаждения ламп.

Учтите следующее:

  1. Филамент представляет собой матрицу.
  2. Конструктивно за матричной часть впаяны диоды, которые выделяют незначительный объем тепла из-за малой мощности. К примеру, если поделить 1 Вт на 28 лампочек, получается в среднем 0,036 Ватт на один светодиод.

Для отвода тепла используется гелий или специальный газ, обеспечивающий минимальный нагрев до 55-60 градусов Цельсия. Это позволяет использовать их в светильниках с тканевыми, бумажными и пластиковыми лампами. При этом нитка филаментной лампы нагревается до 100 градусов Цельсия.

Рейтинг светодиодных ламп для дома по производителям и надежности, ТОП 45 популярных моделей

Какую выдает мощность

Средняя мощность филамента около 1 Вт, а напряжение — 60 В. В целом лампочка потребляет от четырех до восьми Вт и имеет следующие параметры:

  • светоотдача: 120 — 140 Лм/Вт;
  • световая температура: до 4500 К в зависимости от уровня исполнения;
  • срок службы 30 000 часов;
  • соотношение по выдаваемой мощности с лампой накаливания, филаментная/ЛК: 2 – 25 Вт, 4 – 40 Вт, 6 – 60 Вт, 8 – 75 Вт.

Для сравнения у ламп накаливания, светодиодных и люминесцентных мощность находится в диапазонах: 10 — 500 Вт, 3 — 30 и 15 — 80 ватт соответственно.

Наиболее низкую световую температуру показывают обычные источники света — 2700 К при сроке службы в 1000 часов.

Что касается люминесцентных и светодиодных ламп, они показывают лучшие характеристики: световая температура до 6500 или 6400 К, а срок службы — 40 и 50 тысяч часов соответственно.

Световые характеристики источников света, на которые следует обращать внимание при покупке

Современный подход к осветительным приборам позволяет учитывать три группы требований к оформлению помещений:

  1. общую освещенность рабочего места;
  2. влияние созданного света на здоровье человека;
  3. экономические показатели, определяющие денежные затраты.

От чего зависит освещенность рабочего места

Единичная лампочка создает световой поток, измеряемый в люменах. Он указывается производителем в сопроводительной документации.

Этот световой поток распределяется по поверхности рабочей зоны и формирует ее освещенность, выражаемую люксами.

Поскольку в помещении обычно используется несколько источников света, то общая освещенность от них рассчитывается по специальной формуле.

Влияние качества освещения на здоровье человека

Цветовой спектр оказывает различное влияние на наш организм: возбуждает или тонизирует его либо создает успокаивающее действие.

Эту особенность позволяет учитывать цветовая температура, маркируемая в градусах Кельвина. Она обычно приводится на упаковочной коробке ламп.

Также при выборе лампочек необходимо учитывать чувствительность человеческого глаза к длине световой волны. Она выражается условными единицами.

Экономические показатели различных источников

Электрическая энергия, потребляемая лампой, преобразуется не только в видимый спектр освещения, но к нему еще дополнительно прибавляется:

  1. ультрафиолетовое;
  2. инфракрасное;
  3. тепловое излучение.

В итоге на 1 ватт затраченной электрической мощности у всех видов ламп создается разный уровень освещенности, называемый световой отдачей.

Она самая низкая у нитей накаливания и наиболее высокая у светодиодов.

Красота и функциональность лампы «свеча на ветру»

На концах электроды, на которые подается электрический ток. Ток проходит через газ. Электроны бегут по газу и сталкиваются с атомами ртути, выбивают электроны в атомах ртути с их привычной орбиты на более высокую. Сразу после столкновения электроны прыгают обратно на свою привычную орбиту, при этом возвращают полученную от тока энергию в виде света. В лампах дневного света газ вырабатывает ультрафиолетовый свет, невидимый глазу.

Их формы бывают следующие: свеча — узкая и вытянутая вверх с округлением вершинки; «свеча на ветру» — колба узкая с несимметричным заостренным кончиком, имитацией огня, хорошо подходит для открытых светильников-канделябров; закрученная свеча — яйцеобразной формы с винтовой спиралью по поверхности купола, которая создает игру света с эффектом пламени; огненное пламя — поверхность стекла лампы имеет рифление, преломляющее лучи, с эффектом мерцания огня. Интересен эффект применения белого матового стекла, оно рассеивает исходящий от источника свет, приглушая его. Декоративная «свеча на ветру» с такой колбой может имитировать настоящую свечку в канделябре. Главное подобрать подходящий цвет купола. Отличие от обычных типов Лампочки в виде языков пламени появились давно.

При правильном расположении спотов большая комната легко делится на несколько зон. Неплохим вариантом будет установка на потолке овалом нескольких светильников, при этом фигура может быть разделена на несколько сегментов, включаемых отдельно. Неплохо смотрятся решения с многоуровневыми подвесными потолками, на которых установлены споты. При выборе схемы следует обязательно учитывать дизайн интерьера, поскольку для выбора другого решения потребуются серьезные ремонтные работы. Для спальни. По сути, это помещение является сплошной зоной отдыха, следовательно, в нем необходимо придерживаться умеренного освещения.

Что это такое?

Светодиодные лампочки или LED (от английского Light-Emitting Diode) произвели настоящую революцию в мире осветительных приборов. Лампы-свечи имеют особую форму. Стеклянный купол напоминают дрожащее пламя свечи. В остальном они ничем не отличаются от других светодиодных светильников.

Принцип работы таких лампочек гораздо сложнее с точки зрения физики, чем у обыкновенных ламп накаливания. В его основе лежит взаимодействие двух материалов: одного с частицами положительно заряженными, а другого – с отрицательными. В процессе соединения двух веществ и перехода их из одного состояния в другое выделяется тепло.

Еще в середине ХХ века были найдены вещества, создающие свечение во время выделения тепла. Долгое время светодиоды использовались лишь как индикаторы, так как они излучали неяркий свет красного или зеленого цвета. Зато уровень современной науки позволил найти вещества, излучающие яркий и мощный свет. Светодиоды, изготовленные из таких материалов, дают людям возможность получить мощные осветительные приборы.

Конструкция светодиодной лампы следующая. Она состоит из цоколя, металлического корпуса, платы питания и платы со светодиодами, прозрачного стеклянного купола.

В отличие от обыкновенной «лампочки Ильича», светодиод состоит из множества небольших элементов, объединённых на специальной платформе с токодорожками, поскольку каждый отдельный диод слишком мал для освещения целой комнаты.

Технологии

На сегодняшний день лампы-свечи бывают в трех основных исполнениях:

  • лампы накаливания – устаревшая технология, отличающаяся малым сроком службы и хрупкостью;
  • галогенные источники света – более экономичны и долго служат, но их стоимость выше, кроме того, они небезопасны;
  • светодиодные светильники – прогрессивная технология, заполнившая рынок.

Технология Light-Emitting Diode совершила революцию в мире освещения. Благодаря развитию LED стал возможен массовый выпуск лампочек с дизайнерским оформлением, в том числе свечей. Светодиодные лампы обладают высокой мощностью света при низком энергопотреблении. Они не так сильно нагреваются, как лампы накаливания, и обладают большим сроком службы. Кроме того, светодиоды абсолютно безопасны в плане экологии и эксплуатации.

Конструкционно светодиодная лампа состоит из цоколя, платы управления питанием, светодиодной ленты, радиатора и колбы. Плата управления питанием настраивает светодиоды на нужную яркость свечения или выполнение определенных действий, таких как мерцание света. Светодиод имеет небольшие размеры, поэтому для яркого освещения их объединяют в группы на ленте, с соединением их токоведущими дорожками. Радиатор из металла или пластика нужен для отвода тепла от источника света. Стеклянный купол в виде сфероида защищает светодиоды. В этом отличие ламп-свечей от других видов светодиодных лампочек.

Цоколь служит для крепления в осветительном приборе. Для светодиодных свечей чаще всего используется два стандартных размера резьбы, это 14 и 27 мм – Е14 и Е27 по маркировке.

Характеристики

Филаментные лампы выпускаются в ограниченном диапазоне потребляемой мощности – от 4 до 8 Вт, что эквивалентно 85 Вт ЛН. Это связано с проблемой охлаждения светодиодной нити. Такая лампа способна создать поток света, равный 980 лм. Светоотдача составляет около 120 лм/Вт. Производители заявляют срок службы изделия около 30 тыс. часов. Световая температура филаментных светодиодных источников света находится в пределах 2 700 К.

Сравнение ламп от разных производителей

Признанный российский производитель Томский завод осветительных приборов Rusled реализует филаментные устройства под торговой маркой “Лампочка Томича”. Изделия этой фирмы нацелены на замещение импортной продукции. Выпускаются лампы трех модификаций: 4, 6, и 8 Вт со световым потоком 400, 600 и 800 лм соответственно. Производитель заявляет ресурс изделия равным 15 тыс. часов.

Изготовление филаментных источников света проводится на базе производства ЛН с использованием китайских комплектующих. При проведении независимого тестирования практически все заявленные характеристики были подтверждены. Однако ресурс изделий не выдерживает никакой критики. Из 30 тестируемых ламп за 2 месяца вышли из строя 26 шт. Связан ли брак с переходным периодом и модернизацией оборудования, не понятно.

Другой российский производитель из Саранска – Лисма – выпускает модели 4, 6, 8, и 9 Вт. Филаменты несколько отличаются от “томичей”. В этих изделиях стеклянная подложка покрывается кристаллами и люминофором только с одной стороны, вторая остается чистой. Это позволяет еще больше повысить срок службы кристаллов за счет увеличивающегося теплоотвода. Производитель гарантирует исправную работу источников света в течение 30 тыс. часов.

При проведении тестирования температура колбы 8- и 9-ваттных ламп составила 70 и 85°С соответственно. В этом случае сложно говорить о длительном сроке службы изделия. В этих же моделях и другие параметры, кроме пульсации, не соответствуют заявленным.

В большинстве случаев поломки филаментных ламп происходили из-за низкого качества изготовления драйвера. При разборке было выявленно повышенное (более 300 В вместо 160 В) напряжение, что говорит о выходе из строя источника питания. Эти поломки характерны для изделий обоих производителей. Хотя необходимо отметить, что процент брака у Лисмы ниже и составляет 20-25%.

Преимущества филаментных ламп

Положительными качествами филаментных ламп являются:

  • совместимость с патронами Е27 и Е14;
  • низкое энергопотребление;
  • большой световой поток и высокое качество света;
  • длительный срок службы;
  • экологичность, утилизируются как бытовые отходы;
  • низкая рабочая температура нити.

Благодаря этим характеристикам спрос на филаментные светодиодные лампы и их производство будут расти.

Недостатки

Как и любые недавно выпущенные изделия, эти лампы имеют свои отрицательные стороны:

  • высокая цена;
  • низкая прочность стекла;
  • большой процент брака;
  • отсутствие низковольтных аналогов.

Дальнейшее развитие производства должно привести к уменьшению цен и повышению качества продукции.

Предыдущая ПодсветкаВыбор подсветки для аквариума и как сделать самостоятельно Следующая Светильники, браКак выбрать подходящий светильник для аквариума

Спасибо, помогло!Не помогло

Современная научная разработка: катодолюминесцентные лампы российских ученых

За основу конструкции внешнего вида взята все та же лампочка Ильича, но со значительным изменением внутренних компонентов.

Она вышла своевременно и стала актуальной потому, что решением международной Минаматской конвенции между государствами (более 140 участников) создан договор, ограничивающий антропогенные выбросы в окружающую среду ртутных паров и их соединений, приводящих к отравлению живых организмов.

С начала 2020 года попадают под запрещение КЛЛ и люминесцентные лампы, отдельные виды ртутьсодержащей продукции, включая электрические батареи, реле и переключатели.

А от этого запрета под вопросом становится применение ультрафиолетовых источников света, так необходимых для медицинских учреждений, а также сельскохозяйственных предприятий, занимающихся выращиванием растений в теплицах.

Российскими учеными, работающими на кафедре вакуумной электроники Московского физико-технического института при совместной работе с коллегами из ФИАН, удалось создать, испытать и запустить в производство катодолюминесцентную лампу, не содержащую опасных компонентов ртути.

У нее довольно оригинальный принцип работы, повторяющий конструкцию старого кинескопного телевизора.

Анод выполнен тонким алюминиевым зеркалом, которое при работе подвергается бомбардировке потока электронов, вылетающих из катода с модулятором.

Вакуумная среда внутри герметичного стеклянного корпуса колбы обеспечивает надежную работу, как и у всех обычных радиоэлектронных ламп.

Над анодом расположен слой люминофора. Им можно придать практически любую цветовую гамму создаваемому освещению. Это особенно ценно для ультрафиолетового спектра, которому раньше требовались пары ртути.

Особая сложность при создании этой конструкции возникла с модулем катодного излучения. Дело в том, что подобные лампочки пытались изготавливать во многих странах, включая США. Там даже было налажено опытное производство и пробная продажа.

Но она не получила развития: их катодолюминесцентные источники света долго разогревались и зажигали освещение с задержкой по времени, да и размеры получались громоздкими.

Российские ученые удачно решили эти вопросы за счет использования технологии туннельного эффекта и применения углеволокна в качестве материала излучающего катода.

Еще несколько научных разработок ученых из Физтеха легло в основу автокадной конструкции катодолюминесцентной лампы. Она обладает уникальными электрическими характеристиками и способна конкурировать с большой массой существующих светодиодных ламп.

При ее эксплуатации отсутствует необходимость заботиться об охлаждении и отводе тепла, как у обычных полупроводниковых приборов. Она не боится перегрева и не потеряет свою яркость.

Такая лампочка отлично будет работать в закрытых потолочных светильниках без специального охлаждения.

Видеоролик владельца «Мир 24» объясняет, почему российская лампочка будет конкурировать со светодиодами masterok.

Заканчивая изложение материала по теме «Какие бывают лампочки», обращаю внимание, что сейчас у вас благоприятный момент задать вопрос или прокомментировать статью для ее совместного обсуждения

Устройство filament LED лампочки

В технической терминологии слово «filament» означает «нить накаливания». Поэтому в России постепенно входит в обиход словосочетание «филаментная лампа». Она состоит из 4 основных частей:

  • светодиодные стержни;
  • стеклянная колба;
  • металлический цоколь;
  • плата драйвера.

Иногда в конструкции дополнительно присутствует основание цокольной части.

На каждый светодиодный филамент наносится толстый слой силиконового люминофора желтого цвета. Он препятствует прохождению ультрафиолета и способствует равномерному рассеиванию светового потока. Цветовая температура светодиодов соответствует тёплому или нейтральному диапазону, чтобы наиболее точно имитировать предшественников с вольфрамовой нитью.

Питание светодиодных нитей происходит не напрямую, а через драйвер. Так как вместить ШИМ преобразователь в цоколе стандартного образца практически невозможно, в качестве источника питания используют примитивные электронные схемы. Тем не менее, производители мирового уровня стараются монтировать в цоколе филаментной лампочки полноценный драйвер, обеспечивающий стабильное питание светодиодов.

Стоит отметить, что филаментные лампы одного производителя, но разной мощности и под разные цоколи будут отличаться качеством драйвера и его схемотехникой. Причин этому несколько. Во-первых, внутри цоколя Е27 больше пространства, чем внутри Е14. Значит, в нем можно вместить простейший стабилизатор и сглаживающий конденсатор. Во-вторых, от количества последовательно включенных светящихся нитей зависит напряжение их питания, что создает дополнительные трудности при использовании цоколя малых размеров.

Проблема нехватки места под драйвер успешно решается некоторыми производителями путём увеличения цокольной части филаментной светодиодной лампы, а именно, установкой пластиковой окантовки между цоколем и колбой. За счет пластикового кольца появляется дополнительное пространство под сглаживающий конденсатор и более объемную схему драйвера.

Анализ причины перегорания филаментной лампы

Чтобы не отставать от технического прогресса при появлении на рынке филаментных ламп приобрел двенадцать таких лампочек с цоколем Е14 мощностью 6 Вт для двух люстр.

Лампы красиво смотрелись в люстре и хорошо освещали помещение, но через год эксплуатации одна из них ярко вспыхнула и перестала светить. Решил выяснить, в чем причина отказа.

Попытка отделить цоколь от колбы лампы не увенчалась успехом. Клей-компаунд скрепил цоколь с колбой намертво. Пришлось применить разрушающий метод разборки с помощью тисков.

Для извлечения драйвера из цоколя пришлось, вращая его сжимать по немного тоже в тисках. Компаунд и остатки стекла колбы при этом крошились.

В результате удалось извлечь из лампы филаменты и драйвер без их повреждения. На фотографии показано как выглядит филаментная лампа без колбы и цоколя.

При осмотре драйвера сразу бросилось в глаза, что рядом с токоограничивающим конденсатором резистор был покрыт слоем копоти, что свидетельствовало о сгорании одной из деталей. Проверка резистора показала его исправность. Следовательно, вышел из строя конденсатор.

На противоположной стороне печатной платы драйвера был распаян только мостовой выпрямитель и нанесена маркировка для подключения. Позвонка диодов мультиметром показала, что все диоды исправны.

Электрическая схема филаментной лампы

Для дальнейшего анализа причины отказа с печатной платы драйвера срисовал электрическую принципиальную схему филаментной лампы. Как видно из схемы, она практически не отличается от стандартной схемы светодиодной лампы, собранной на обыкновенных светодиодах с токоограничивающим конденсатором.

Ток стабилизируется с помощью конденсатора С1, выпрямляется диодным мостом VD1-VD4 и далее поступает на филаменты HL1-HL6, соединенные последовательно двумя параллельными группами по три. Резисторы служат для разряда конденсаторов после выключения лампы. С2 сглаживает пульсации.

Достоинством этой схемы драйвера является простота, позволяющая поместить его даже в цоколь Е14, высокий КПД и практически отсутствие выделения тепла. Недостатком является большой коэффициент пульсаций светового потока, что исключает использование ламп с таким драйвером для освещения рабочих мест с напряженным трудом.

Если необходима филаментная лампа с малым коэффициентом пульсаций, то нужно приобретать с драйвером на микросхеме. На фото классическая схема такого драйвера, но он больше по размерам, поэтому устанавливается только в филаментные лампы с цоколь Е27.

Проверка филаментов лампы

Для проверки филаментов необходимо на их выводы подать напряжение постоянного тока не менее 60 В. Поэтому мультиметром, который выдает в режиме измерения сопротивления напряжение не более 9 В прозвонить филамент невозможно.

Поэтому для проверки филаментов был использован драйвер, извлеченный из лампы. Конденсатор С1 был в обрыве, поэтому был выпаян и вместо него запаян исправный навесной такой же емкости.

При подаче напряжения на драйвер, засветился только один из шести филаментов, и то участками, что указывало на возможную неисправность всех филаментов лампы.

Для проверки филаментов они были разъединены и проверены по отдельности. Подключались к родному драйверу, последовательно с которым по цепи подачи питающего напряжения был запаян дополнительных конденсатор такой же емкости.

Как и ожидалось, все филаменты отказались неисправными. Один из них засветился, как и ранее, участками, что не позволяло его дальнейшее использование.

Причина перегорания филаментной лампы

Филаментная лампа перегорела из-за электрического пробоя токоограничивающего конденсатора С1. В результате все напряжение питающей сети (220 В) было приложено к выводам светодиодных филаментов и через них потек ток, превышающий допустимый.

Светодиоды от перегрева перегорели, как и сам конденсатор. От него и покрылась копотью печатная плата.

Вообще что такое филамент?

Мы привыкли, что все современные светодиодные лампы, которые есть в продаже, устроены на SMD диодах. Первоначальные лампы на DIP диодах уже давно отжили своё, т.к. не эффективны — их уже трудно сыскать

Сейчас самые популярные в форме груши, свечи, шариков, таблетки gx53 — они все в основном идут на SMD диодах 2835, 5730, 5630 типа.

И даже есть уже лампы на COB диодах — это чипы с очень плотным монтажом для изготовления в основном миниатюрных ламп G4 и G9. А также MR16 и другие лампы направленного света. Груши на COB технологии изготавливать смысла большого нет, так как COB светодиоды имеют очень малый угол рассеивания — всего 120 градусов.

Поэтому на основе таких светодиодов делают источники света (лампы, светильники) именно направленного света, такие как прожекторы.

А если нужен рассеянный свет, то выходят из положения применением SMD диодов, размещая их на матрице в одной плоскости, которую прикрепляют к радиатору для теплоотвода. А свет рассеивается за счет матовой колбы.

Но так или иначе, в любом случае, угол рассеивания гораздо хуже чем у филаментных — где-то 180 градусов, а то и меньше.

Преимущество такой технологии в том что, она позволяет хорошо отводить тепло.

Особенно если в конструкции применён хороший радиатор.

Еще некоторые производители пытаются выйти из положения за счёт увеличения сферы матового рассеивателя (пластиковой колбы), дабы увеличить сам угол рассеивания.

Статья по теме: Обезьянка крестиком схема: к новому году 2021, бесплатно, рисунок

Вот как раз в таких LED лампах угол приближен к 270 градусам.

Но, в любом случае, за счёт матового рассеивателя КПД лампы снижается, т.к. часть света теряется вот в этом самом рассеивателе. Чтобы уйти от этой «потери света» изобрели вот такие вот филаменты.

В них применяются нитевидные светодиодные матрицы. Это не один светодиод, а типа COB технология, только здесь она называется COG (Chip on Glass).

В COG на стеклянное основание нарощены светодиоды и покрыты люминофором ( которое как раз таки и светится тем или иным цветом свечения).

Для того чтобы отводить тепло этих нитевидных светодиодов, внутрь закачан (по сути должен быть закачан по технологии) газ, на основе гелия. Вот он обладает хорошей теплопроводностью и текучестью. Он там внутри за счет конвекции он отводит тепло от светодиодов к стеклянной колбе, а та уже отдает в окружающую среду.

Так вот мощность филаментных ламп ограничена ёмкостью вот этой колбы, и сколько туда газа можно закачать.

Поэтому невозможно поставить там 20-30 таких светодиодных нитей. Да, теоретически они будут светить, но не долго, т.к. быстро перегреются и выйдут из строя.

Поэтому как и классические LED лампы, филаментные ограничены в мощности. В маленькой лампочке нельзя реализовать 20Вт, а обычно 5-7Вт.

Максимум, что мне встречалось это 18Вт в А60 колбе у LEDeX, и то с применением хорошего радиатора. Так что в принципе для долгосрочной службы лампы реализовать больше мощности уже не получится.

Так и в филаментных мощность лампы ограничена размерами, а точнее емкостью колбы.

На пример, Feron заявляют, что реализовали на этой лампе 7Вт.

Но насколько я уже сталкивался с этими лампами, в среднем мощность одной нити составляет порядка 1Вт.

Соответственно если нитей четыре, то получается 4 Вт. Но у каждого производителя разные комплектующие и возможно в одной нити может быть конечно и больше 1Вт. Но это очень просто замерять.

Здесь вот чудес нет, и она не 7 Вт. Как я и подозревал, 3-4 Вта — вот такая фактическая мощность. Как видите, достаточно легко с этими лампами прикинуть мощность: просто смотрите, сколько у неё нитей. И помните: одна нить потребляет порядка 1Вт.

К тому же коэффициент пульсации порядка 25%, а это, в любом случае, больше чем санитарные нормы. Поэтому для бытового использования в домашних условиях я бы такой лампу наверное не применял.

Из плюсов: лампа не греется, и буквально чуть тепленькая. Хотя на 4Вт… конечно, чего бы она нагревалась. И обычная LED лампа в 4Вт греться почти не будет. Но КПД у филаментной лампы выше.

Сейчас они пока конечно дороже чем обычные на традиционных SMD диодах.

Особенно разница ощущается в ряду с удешевленными лампами на так называемых, композитных радиаторах. Там радиатор где-то есть, а где-то нет. Так для чего имеет смысл покупать такие вот филамент-лампочки?

Лампы с таким нитевидным светодиодом отлично подходят именно для хрустальных светильников и люстр.

Потому что для хрустальных светильников важен, вот этот эффект, чтобы свет играл на грани хрусталя. А с матовым источником хрустальные люстры переливаться не будут.

Ну и потом так как КПД такой лампы лучше, она и свет рассеивает лучше. И там, где Вам нужен именно хороший угол рассеивания, вот такие филаменты подойдут лучше всего.

Плюсы и минусы филаментных ламп

Для начала стоит рассмотреть, какие имеются достоинства у этих светодиодных ламп:

  • внешний вид напоминает длинные лампы накаливания, которые имели во все времена огромный спрос;
  • значительная экономия электроэнергии и, как следствие, сокращение расходов на её оплату;
  • отличная совместимость со всеми потолочными светильниками: как старого, так и нового производства;
  • очень низкий порог пульсации света, что прекрасно сказывается на восприятии такого света органами зрения человека;
  • разнообразие оттенков светового потока по цвету: дневной, тёплый, холодный (в зависимости от качества люминофора и его равномерности);
  • не используется сложная система распределения света, дающая равномерное освещение;
  • производство не требует дополнительных мощностей на перенастройку оборудования;
  • внушительный срок службы энергосберегающих ламп (в пределах 50 тысяч часов работы);
  • возможность регулировать степень освещенности при помощи диммера;
  • утилизируется как бытовой отход;
  • не вредит окружающей среде.

К недостаткам филаментных ламп относятся:

  • небольшое место под расположение драйвера, что влечёт за собой использование более простой конструкции драйвера, имеющего повышенный показатель пульсации (иногда применяется миниатюрный драйвер, который имеет высокую цену);
  • хрупкость колбы, в которой находится филамент;
  • малая известность фирм, специализирующихся на выпуске подобного вида светодиодных ламп.

Как видно, что достоинств у филаментных ламп больше, чем недостатков, к тому же они не такие значительные.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий