Виды и подключение RGB-контроллера для светодиодной ленты

Светодиодная лента WS2811 12 В против светодиодной ленты WS2812B 5 В

Этого не всегда достаточно для точного воспроизведения выбранных вами цветов.

Если вместо этого вы начнете с 12 вольт и получите такое же падение на 2,5 вольт, это будет представлять собой только изменение напряжения 21%, а оставшиеся 9,5 вольт будут давать значительно более точные цвета, чем 5-вольтовая светодиодная лента ws2812b.

Вы можете увидеть разницу в точности цветопередачи между 12-вольтовой WS2811 и 5-вольтовой адресной светодиодной лентой ws2812B здесь, когда они обе выдают яркость 100% для всей светодиодной ленты.

Решение этой проблемы заключается в подаче питания на оба конца цифровой светодиодной ленты методом, называемым инжекцией мощности.

Но в тех случаях, когда частая подача питания невозможна, обычно следует отдавать предпочтение адресным светодиодным лентам на 12 В, таким как WS2811.

В большинстве случаев адресные светодиодные ленты WS2811 являются наименее дорогими, но у них есть несколько недостатков.

Самое главное, что самые дешевые версии светодиодной ленты WS2811 не имеют индивидуальной адресации, обычно светодиодная лента WS2811 имеет один микроконтроллер, который фактически питает 3 светодиодных пикселя или в общей сложности 9 каналов.

Это означает, что на самом деле невозможно управлять каждым светодиодом, вместо этого каждый пиксель в вашем коде представляет собой группу из 3 светодиодных чипов.

В моих тестах адресная светодиодная лента WS2811 показала одно из самых высоких значений энергопотребления, когда светодиоды не горели.

Потребляя 1,27 Вт мощности для своих микроконтроллеров и освещая всю полосу чистым белым светом, мы получаем 1,64 ампера.

Что составляет около 19,68 Вт при полной яркости, вы также можете видеть, что точность цветопередачи действительно хороша на всей 5-метровой полосе, даже без какой-либо подпитки.

Что, как я упоминал ранее, является огромным преимуществом 12-вольтовой адресуемой светодиодной ленты ws2811 по сравнению с 5-вольтовой адресуемой светодиодной лентой ws2812b.

Что касается варианта использования, адресную светодиодную ленту WS2811 следует рассматривать, когда стоимость является важным фактором или когда подача питания не может быть легко осуществлена, но не обязательно, если вам нужно управлять каждым пикселем в отдельности.

Далее в списке идет наиболее распространенный тип адресной цифровой светодиодной ленты, светодиодные ленты ws2812B, в которых, в отличие от WS2811, микросхема контроллера правильно встроена в светодиодный корпус, светодиодная лента ws2812B выпускается только в 5-вольтовом исполнении. , поэтому ему потребуется больше энергии, чем 12-вольтовой пиксельной светодиодной ленте WS2811.

Но меньшие компоненты означают, что для производства этой пиксельной светодиодной ленты требуется меньше материала, и теоретически стоимость ленты должна быть ниже, поскольку каждый светодиод можно контролировать отдельно.

В моем тесте адресная светодиодная лента ws2812B потребляла вдвое меньше энергии, чем ws2811, когда светодиоды не горели.

Но, как и ожидалось, потребляемая мощность светодиодов была почти одинаковой — около 60 мВт на канал, а полная адресуемая светодиодная лента потребляла всего 13,6 Вт. что примерно на 6 Вт меньше, чем у ws2811.

У меня также есть еще одна новая разновидность ws2812B, называемая Eco, в моем тесте версия Eco имела самое низкое базовое энергопотребление, требующее всего 56 мВт при отсутствии горящих светодиодов.

5-вольтовые светодиодные ленты обоих типов действительно изо всех сил пытались воспроизвести точные цвета ближе к концу цифровой светодиодной ленты из-за падения напряжения.

Эко-версия в целом работает немного хуже, чем неэко-версия.

Я использую светодиодные ленты ws2812B RGBIC в качестве адресуемых светодиодных лент RGB общего назначения, они относительно дешевы, имеют огромное разнообразие типов гидроизоляции и цветов полос с различной плотностью пикселей, и они совместимы практически со всеми библиотеками, это означает для управления индивидуально адресуемыми светодиодами.

Настройка (программирование) контроллера

Управление led освещением производится несколькими способами. Настенный выключатель, дистанционное управление с помощью пульта, а также управление с помощью смартфона позволяют с легкостью установить необходимый оттенок и яркость светодиодной конструкции.

Что касается настенного выключателя с встроенным ШИМ регулятором, то в установке и настройке данного девайса не должно возникнуть проблем. Данное управление основано на передаче сигнала непосредственно по проводам и не предусматривает сбоев.

Дистанционные устройства имеют несколько вариантов управления:

  • контроллер с инфракрасным портом;
  • контроллер с радиоуправлением;
  • управление со смартфона через Bluetooth;
  • управление со смартфона через wi-fi.

Программирование и настройка контроллера с инфракрасным портом производится непосредственно производителем на одной из стадий изготовления. Все что нужно сделать потребителю, так это следовать инструкции по подключению и соблюдать допустимые нагрузки.

В ходе использования ИК как пульт управления, у многих возникает проблемы с отсутствием передачи сигнала. Прежде всего проверяется сам инфракрасный датчик на работоспособность. Проверить можно следующим образом, навести луч ИК датчика на камеру телефона, если не увидите мигающей лампочки, то, скорее всего проблема в питании пульта. Необходимо заменить батарейки и все заработает.

RGB контроллер с радио управлением, имеет значимые преимущества перед инфракрасным. Данный тип устройств имеет синхронизацию по радио частоте 2,4 ГГц. Данная частота наиболее перегружена, поэтому у некоторых контроллеров могут сбиваться настройки или создаваться помехи в управлении иными устройствами.

В контроллерах для светодиодных лент с радио управляющим модулем существует некая комбинация нажатия кнопок, при которой можно запрограммировать или перенастроить сигнал.

Данные комбинации не предоставляет производитель, но на некоторые контроллеры мы нашли комбинации для восстановления настроек. К слову, данные контроллеры имеют большой спрос из-за возможности восстановления настроек.

К примеру, по истечению некоторого времени произошел сбой настроек, или пульт перестал реагировать на ленту. В этой ситуации можно либо выбросить данное устройство, либо реанимировать его. Исходя из нашей интернет инструкции программирования контроллера, размещенной на сайте.

Для того чтобы RGB контроллер запрограммировать, настроить на нужную радиочастоту необходимо:

  • отключить питание от блока управления светодиодной лентой;
  • подключить питание обратно;
  • выполнить зажатия или кратковременное касание определенных кнопок (в зависимости от контроллера) на протяжении 3-5 секунд. После чего, светодиодная лента несколько раз промигает.

С помощью устройств с такими функциями управление светодиодной лентой будет осуществляться гораздо дольше.

Такой же принцип имеют wi-fi контроллеры на 4 зоны, только управление светодиодной лентой может осуществляться с помощью мобильного устройства. Для этого нужно загрузить приложение, которое относится к данной модели контроллера. И выполнить пошаговую инструкцию, которая предусматривает похожие шаги программирования как у контроллеров с радиочастотой.

Программирование и настройка RGB контроллеров имеет простые шаги выполнения. Для удобства наших покупателей, мы разработали схематичные технические описания контроллеров. Также, каждый контроллер имеет видео инструкцию по установке, программированию и настройте. Все это нужно для того, чтобы наши покупатели тратили меньше времени на установку и настройку.

Источник

ПОДКЛЮЧЕНИЕ RGB СВЕТОДИОДНОЙ ЛЕНТЫ К КОНТРОЛЛЕРУ

Для того, чтобы подключить ленту к устройству, не требуется наличие высокой квалификации. Производители осветительных приборов, устройств управления и блоков питания, также выпускают различную соединительную фурнитуру, облегчающую самостоятельную работу.

Это специальные коннекторы и переходники, которые позволяют подсоединить светоизлучающие элементы без использования паяльного инструмента.

Перед тем, как подключить светодиодную ленту к контроллеру, нужно убедиться в соответствии параметров устройства. К примеру, контроллер для светодиодной ленты 12 вольт не пригоден для подключения 24-х вольтовой подсветки. И наоборот.

Разработаны и продаются также универсальные конструкции. Это должно быть отражено в сопроводительной документации. Там же указано, как осуществлять переключение с одного типа питания на другой, либо это будет делаться автоматически.

Подключение несоответствующего контроллера к светодиодной ленте в лучшем случае приведет к тому, что собранная конструкция работать не будет. Худший вариант развития событий – выход из строя контроллера, блока питания или светоизлучающих элементов.

На корпусе устройства располагается несколько клемм:

  • две клеммы питания (+ и -);
  • клеммы подключения LED элементов (+, R, G, B).

Обыкновенно клеммы питания и выходные располагаются на разных сторонах устройства.

Для подключения гибких лент используется четыре провода, на одном из концов которых крепят коннектор. Свободные концы подключают к блоку управления при помощи болтовых креплений.

Используя гибкие многожильные провода легко допустить замыкание соседних клемм из-за того, что одна или несколько жилок провода не попали под клеммный болт. В данном случае возможен выход контроллера из строя либо неправильная коммутация светодиодов.

Качественные LED контроллеры для многоцветных светодиодных лент используют подключение при помощи разъемов, поэтому комплектуются готовыми соединительными проводами. Для монтажа таких устройств никаких инструментов и навыков не требуется.

Применяя управляющие устройства и блоки питания одного производителя, можно быть уверенными в том, что собранная конструкция заработает сразу же и будет исправно работать весь оговоренный срок эксплуатации.

Не следует использовать дешевые комплектующие неизвестного производства. Недобросовестные производители с целью снизить себестоимость пренебрегают надежностью работы и качеством сборки.

Сэкономив при монтаже, можно разочароваться в дальнейшем, когда освещение перестанет функционировать в неподходящий момент, да и в плане пожарной безопасности использовать ненадежные электрические конструкции не следует.

2012-2022 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Преобразователь напряжения 5В → 12В

При использовании специализированного ШИМ-контроллера, к примеру LM2577, потребуется минимальное количество элементов. Стоимость его невысока, а собранное устройство начинает работать сразу, без дополнительной настройки.

Схема преобразователя:


Простейший преобразователь напряжения 5 – 12В

Что необходимо иметь:

  • Микросхема ШИМ-контроллера LM2577;
  • несколько радиоэлементов согласно принципиальной схемы;
  • разборный USB разъем;
  • соединительные провода.

Данная схема является универсальной и позволяет получить на выходе напряжение в широком диапазоне. За уровень напряжения отвечают резисторы R1 и R2:

Uвых = 1.23 * (1 + R1 / R2)

Несколько подробнее об элементной базе и работе схемы. Схема представляет собой широтно-импульсный преобразователь в стандартном включении микросхемы так, как показано в технической документации. Электролитические конденсаторы на входе и выходе питания предназначены для сглаживания пульсаций постоянного напряжения. Их емкость не критична. Главное, чтобы она была не меньше указанной на схеме. Рабочее напряжение электролитических конденсаторов должно быть больше максимально используемого, то есть, в нашем случае не менее 20В.

Резистор и конденсатор, подключенные к выводу 1 микросхемы являются частотозадающей цепью. Здесь номиналы должны быть соблюдены строго.

То же самое относится к индуктивности между выводами 4 и 5. Значение индуктивности катушки должно составлять 100 мкГн. Не больше и не меньше.

Специфические требования предъявляются к диоду. В данной схеме используется высокочастотный диод Шоттки. Диоды такого типа обладают высоким быстродействием, а самое главное, низким падением напряжения на переходе. Применяя обычный высокочастотный выпрямительный диод, получим сильные просадки выходного напряжения при изменении тока потребления нагрузки. Марка диода может быть любой, поскольку в данной схеме используется низкие значения напряжения и тока. Главное условие – использование диода Шоттки.

Разборный USB штекер

Для начала распайка USB разъема. В гнезде имеется четыре контакта. Два крайних это те, которые нам нужны. Чтобы не путаться с расположением лицевой и тыльной стороны, проще определить полярность любым вольтметром, воткнув штекер в любое свободное гнездо. Пометьте чем-нибудь плюсовой вывод.

Схема собирается на печатной плате из фольгированного стеклотекстолита. Собранный преобразователь выглядит следующим образом:

Преобразователь в сборе

Как видно, светодиодную ленту подключить через USB самому не так уж трудно. Самое главное при подключении светодиодной ленты USB, это правильно выполнить монтаж радиоэлементов.

Подключение светодиодной RGB ленты

Правильный порядок подключения элементов цепи выглядит следующим образом:

Правильный порядок подключения

Запомните. Участки ленты, длиной больше 5 метров, должны подключаться только параллельно.

Что будет, если подключить последовательно?

Во-первых, вы заметно потеряете в яркости на конце участка. Хотя светодиоды и имеют очень малое сопротивление, но потери есть. При такой протяженности на конце напряжение будет порядка 10В. Пониженное напряжение даст пониженную яркость, уже заметную для глаза.

Неправильное подключениеПравильное подключение

Во-вторых, токопроводящие дорожки ленты рассчитаны на максимальную длину 5м. Подключив последовательно еще 5, дорожки будут перегреваться и освещение скорее всего перегорит в самом начале участка.

RGB коннектор

Соединять ленту между собой можно с помощью пайки или клеммами. Для одноцветных вариантов продаются двухвыводные клеммы (коннекторы), для RGB – четырёх или пяти. Уточняйте этот момент при покупке.

Подробнее как соединять rgb ленту между собой.

Блок питания подключается в сеть 220В (клеммы AC, полярность не важна), преобразует переменное напряжение в постоянное 12В (клеммы V+, V-)

При подключении следующих элементов цепи важно соблюдать полярность

Клеммы подключения на БП

RGB контроллер подключается после блока питания (с соблюдением полярности), а в него подключается ргб лента. Каждый вывод на корпусе предназначен для конкретного вывода светодиодов. Если перепутаете местами, ничего страшного не произойдет, просто цвета будут перепутаны.

Клеммы подключения контроллера к светодиодам

В результате готовая схема в сборе должна иметь вид:

Схема в сборе

Усилитель внешне похож на контроллер, отдельно подключается к БП, только имеет не одну плашку с клеммами, а две. Маркируется чаще всего как Led Amplifier, устанавливается в разрыв ленты. Подключается по схеме:

Порядок подключения RGB усилителя в цепьНазначение клемм led amplifier

Разберем теперь схемы подключения лент разной длины с усилителем и без, с одним или несколькими блоками питания.

Схема подключения RGB светодиодной ленты без усилителя

Это простейшая схема включения rgb светодиодной ленты длиной до 5 метров через контроллер с пультом.

Электрическая схема подключения RGB освещения

Для подключения светодиодной RGB ленты длиной 10 или 15 метров, убедитесь, что хватает мощности контроллера и БП (с запасом), и подключайте по следующей схеме:

Схема подключения 10 или 15 

Схема подключения ленты с RGB усилителем

Усилитель используем, если не хватает мощности контроллера. Если мощность блока питания позволяет подключить контроллер и усилитель, используем следующую схему:

Когда суммарная мощность контроллера и усилителя выше мощности БП или блок такой мощности использовать нерационально (большой, сильно греется или шумит), тогда подключаем led amplifier к отдельному питанию по схеме:

Схема подключения усилителя с 2 блоками питания

По такой схеме наращивать суммарную длину ленты можно сколько угодно. Вся она будет управляться с одного пульта.

Помимо последовательного подключения, как в примерах выше, усилители можно подключать параллельно.

Схема параллельного подключения нескольких RGB усилителей с одним блоком питания.

Схема: один БП несколько усилителей

Схема с несколькими параллельными усилителями с отдельным питанием.

Схема: несколько параллельных усилителей с отдельными БП

Если клемм нет – используйте паяльник и монтажный провод, НО не перегревайте контактные площадки. Подробнее как соединять ленту.

Правильная схема подключения 20 метров RGB ленты показана на видео.

Пошаговая инструкция по монтажу

При самостоятельном подключении цветной RGB-ленты требуется четкое соблюдение алгоритма:

  1. Поиск места установки и подготовка поверхности. Для начала определитесь с местом установки, а затем выровняйте поверхность, к которой будет крепиться светодиодная лента. Ею может быть потолок, дверь и т. д. Обязательно обезжирьте ее с помощью любого растворителя, иначе двусторонний скотч спустя короткий промежуток времени отойдет. При креплении к металлическим поверхностям требуется дополнительная электрическая изоляция.
  2. Большинство светодиодных RGB-лент самоклеющиеся — снимите с тыльной стороны защитную пленку и аккуратно прижмите изделие к поверхности выбранного места. При выполнении изгибов их радиус должен быть не более 20 мм, в противном случае могут возникнуть неполадки. Разрезайте ленту в строго обозначенных местах. При соединении разных частей пользуйтесь специальными коннекторами или паяльником (подробнее об этом рассказано в отдельной статье).
  3. Подключение электрической цепи. Выберите схему соединения светодиодной ленты из предложенных выше. Объедините изделие с контроллером, усилителем и блоком питания. Последний включите в сеть при помощи электрической вилки. Черный провод блока соедините с клеммой V- на усилителе, красный — V+. Провода светодиодной ленты объедините с контактными площадками контроллера в соответствии с их цветом и обозначением: красный — R, зеленый — G, синий — B. Последний провод подключается к плюсовой клемме — V+.
  4. Подсветка работает от сети 220 В. Проверьте ее работоспособность при помощи пульта ДУ.

Правильные подключение и эксплуатация светодиодной RGB-ленты позволят создать неповторимую атмосферу дома, украсить офисные или жилые помещения, уличную беседку. Наличие тех или иных электротехнических изделий в выбранных схемах зависит от длины платы, количества и типоразмера используемых LED-диодов.

Контроллер для светодиодной ленты: что это?

Чисто технически RGB-контроллер является З-х канальным устройством.

Его процессор управляет диммированием отдельных каналов светодиодной ленты в такой последовательности:

  1. I-ый канал — красным (R) цветом.
  2. II-ой канал — зеленым (G) цветом.
  3. III-ий канал — синим (B) цветом.

Так, включение первого канала активизирует красный светодиод, второго — зеленый, а третьего — синий. Одновременное включение первого и второго каналов даст свечение оранжевого цвета, первого и третьего – фиолетового и т.д. Одновременное включение всех З-х цветов дает цвет, который мы воспринимаем, как белый.

Для полноценного функционирования многоцветной (RGB) светодиодной ленты использование контроллера обязательно, поскольку это устройство дает возможность пользователю:

  • выбирать цвет светодиодной подсветки;
  • настраивать разные программы по смене цветов ленты.

При этом контроллеры могут иметь различные варианты управления: от самого простого (кнопочного), до современного управления по WI-FI (со смартфона либо планшета).

Среди основных видов контроллеров, которые предлагаются производителями, можно выделить такие:

  • инфракрасный – позволяет регулировать интенсивность и цвет подсветки посредством ИК-пульта. Такой контроллер будет самым недорогим и простым из всех вариантов;

радиоканальный – управляет светодиодной подсветкой путем передачи с пульта ДУ радиосигнала. Это делает возможным управление ее цветом и интенсивностью на довольно больших расстояниях;
WI-FI – позволяет управлять подсветкой при помощи специальной программы Magic Color, установленной на смартфон;
DMX – относится к профессиональной серии. К такому устройству одновременно можно подключать до 170-ти независимых светодиодных лент различной длины. Как правило, такие контроллеры используют для обустройства подсветки на крупных объектах (к примеру, в торговых либо развлекательных центрах, ночных клубах и пр.).

Виды пультов

Всего в продаже встречается два основных вида ПДУ:

  1. Кнопочные.
  2. Сенсорные.

Простые кнопочные пульты ДУ встречаются в различных вариантах исполнения. Зачастую они похожи на пульты от телевизора или музыкального центра. Как правило, на ПДУ расположены цветные кнопки, нажатие которых и включает на ленте RGB соответствующий цвет. Например, если нажать на кнопку красного цвета, то светодиодная лента загорится красным цветом. Если нажать на желтую кнопку, то загорится желтый цвет. Управление осуществляется по радиоканалу, передающегося инфракрасным лучом.

Функциональные клавиши позволяют регулировать силу излучения света, выключать и включать ленту, а также выполнять некоторые другие функции, например плавное переливание цветов от синего к красному, от красного к зеленому, от зеленого к желтому и т.д. Иногда этот режим называют – Танец цветов. При помощи пульта можно настраивать скорость цветов, их мерцание и многое другое. Наличие подобных функций зависит от варианта исполнения самого ПДУ. Естественно, чем дороже пульт, тем больше этих функций.

Функция регулировки силы излучения света очень удобна в работе. Она позволяет создать необходимый уровень свечения в помещении и тем самым выполняет роль диммера. В пульте есть несколько основных режимов:

  • яркий свет – яркость 100%;
  • ночник – нежно – голубой цвет;
  • медитация – зеленый цвет;

Сенсорные пульты очень простые в исполнении. Они оснащены сенсорным кольцом, прикасаясь к которому меняется цвет свечения. Удерживая кнопку 3 секунды, включается режим плавного переключения цветом с небольшими паузами. Функций у сенсорного ПДУ много, а вот кнопка всего одна. Для ознакомления со всеми, рекомендуем внимательно почитать паспорт на сенсорный ПДУ.

Усилитель для RGB-ленты

Еще один элемент, используемый при подключении RGB-плат, — усилитель. Если длина ленты превышает пять метров, обойтись без него нельзя.

Изделие оснащено двумя клеммами — Input (входа) и Output (выхода), причем каждая из них имеет те же контактные площадки, что и сама лента — R, G, B и «+». Есть клеммы для подключения питания — «плюс» и «минус» (VDD и GND соответственно).

При достаточной мощности напряжение 12 или 24 В подается от дополнительного блока. Общие концы ленты подключите к клеммам Input на усилителе, после этого подсоедините клемму Output. В конце коннектится управляющий блок через плюсовую и минусовую клеммы VDD и GND

Очень важно соблюдать полярность, иначе диоды не будут светиться

В итоге алгоритм соединения следующий: блок питания, контроллер, первый отрезок ленты, усилитель, второй отрезок. Управление такой электрической цепью осуществляется с помощью одного ПДУ.

В случае необходимости применения нескольких лент длиной от пяти метров и более к схеме подключаются вторые усилитель и блок управления. Наличие или отсутствие последнего определяется мощностью свечения. Строго запрещено параллельное соединение источников питания — только при помощи диодного моста.

Усилитель — громоздкий электротехнический элемент, поэтому не всегда хватает места для его удобного размещения. В случае необходимости его можно заменить на микромодель уменьшенной мощности (убедитесь, что ее достаточно для функционирования ленты).

Поделитесь в социальных сетях:FacebookX
Напишите комментарий