Принцип понижения напряжения питания для светодиода
Для питания низковольтной нагрузки может быть выбрана два пути питания. Первый, это так скажем классический вариант, когда питание снижается за счет резистора. Второй, вариант, который часто используется для зарядных устройств, это гасящий конденсатор. В этом случае напряжение и ток идут словно импульсами, и эти самые импульсы и должны быть точно подобраны, дабы светодиод, нагрузка не сгорела. Здесь необходимо более детальный расчет чем с резистором. Третий вариант, это комбинированное питание, когда применяется и тот и другой способ понижения напряжения. Что же, теперь обо всех этих вариантах по порядку.
Как подключить светодиод к сети 220 вольт
Светодиод – это разновидность полупроводниковых диодов с напряжением и током питания намного меньшим, чем в бытовой электросети. При прямом подключении в сеть 220 вольт, он мгновенно выйдет из строя.
Поэтому светоизлучающий диод обязательно подключается только через токоограничивающий элемент. Наиболее дешевыми и простыми в сборке является схемы с понижающим элементом в виде резистора или конденсатора.
Первое, что нужно знать при подключении к сети 220В, — для номинального свечения через светодиод должен проходить ток в 20мА, а падение напряжения на нем не должно превышать 2,2-3В. Исходя из этого, необходимо рассчитать номинал токоограничивающего резистора по следующей формуле:
- где:
- 0,75 – коэффициент надежности LED;
- U пит – это напряжения источника питания;
- U пад – напряжение, которое падает на светоизлучающем диоде и создает световой поток;
- I – номинальный ток, проходящий через него;
- R – номинал сопротивления для регулирования проходящего тока.
После соответствующих вычислений, номинал сопротивления должен соответствовать 30 кОм.
Однако не стоит забывать, что на сопротивлении будет выделятся большое количество тепла за счет падения напряжения. По этой причине дополнительно необходимо рассчитать мощность этого резистора по формуле:
Для нашего случая U – это будет разность напряжения питающей сети и напряжения падения на светодиоде. После соответствующих вычислений, для подключения одного led мощность сопротивления должна равняться 2Вт.
Важный момент, на который нужно обратить внимание при подключении светодиода в сеть переменного тока – это ограничение обратного напряжения. С этой задачей легко справляется любой кремниевый диод, рассчитанный на ток не менее того, что течет в цепи. Подключается диод последовательно после резистора или обратной полярностью параллельно светодиоду
Подключается диод последовательно после резистора или обратной полярностью параллельно светодиоду.
Существует мнение, что можно обойтись без ограничения обратного напряжения, так как электрический пробой не вызывает повреждения светоизлучающего диода. Однако обратный ток может вызвать перегрев p-n перехода, в результате чего произойдет тепловой пробой и разрушение кристалла светодиода.
Вместо кремниевого диода можно использовать второй светоизлучающий диод с аналогичным прямым током, который подключается обратной полярностью параллельно первому светодиоду. Отрицательной стороной схем с токоограничивающим резистором является необходимость в рассеивании большой мощности.
Эта проблема становится особо актуальной, в случае подключения нагрузки с большим потребляемым током. Решается данная проблема путем замены резистора на неполярный конденсатор, который в подобных схемах называют балластным или гасящим.
Включенный в сеть переменного тока неполярный конденсатор, ведет себя как сопротивление, но не рассеивает потребляемую мощность в виде тепла.
В данных схемах, при выключении питания, конденсатор остается не разряженным, что создает угрозу поражения электрическим током. Данная проблема легко решается путем подключения к конденсатору шунтирующего резистора мощностью 0,5 ватт с сопротивлением не менее 240 кОм.
Расчет резистора для светодиода
Во всех выше представленных схемах с токоограничивающим резистором расчет сопротивления производится согласно закону Ома:
R = U/I
- где:
- U – это напряжение питания;
- I – рабочий ток светодиода.
Рассеиваемая резистором мощность равна P = U * I.
Если планируется использовать схему в корпусе с низкой конвекцией, рекомендуется увеличить максимальное значение рассеиваемой резистором мощности на 30%.
Расчет гасящего конденсатора для светодиода
Расчёт ёмкости гасящего конденсатора (в мкФ) производится по следующей формуле:
C = 3200*I/U
- где:
- I – это ток нагрузки;
- U – напряжение питания.
Данная формула является упрощенной, но ее точности достаточно для последовательного подключения 1-5 слаботочных светодиодов.
Для защиты схемы от перепадов напряжения и импульсных помех, гасящий конденсатор нужно выбирать с рабочим напряжением не менее 400 В.
Конденсатор лучше использовать керамический типа К73–17 с рабочим напряжением более 400 В или его импортный аналог. Нельзя использовать электролитические (полярные) конденсаторы.
Подключение к сети на 5 В
В сети с напряжением 5 В подключение светодиодов (схема показана ниже) чаще всего происходит в последовательном порядке. В данном случае многое зависит от номинального сопротивления в сети. Если этот параметр превышает 10 Ом, то целесообразнее использовать импульсные блоки питания.
При этом с электромагнитными помехами в цепи позволит справиться проходной конденсатор. В данном случае подключение светодиодов лучше проводить с резисторами линейного типа. В свою очередь открытые аналоги сопротивление максимум способны выдерживать 13 Ом. Для повышения проводимости светодиода используются системные модуляторы.
Если рассматривать модели с контактными драйверами, то для них необходимо отдельно подбирать контроллеры. Чаще всего их используют со специальным усилителем. В данном случае пороговое напряжение будет находиться на уровне 6 В. Для того чтобы решить проблему с отрицательной полярностью в сети, многие специалисты рекомендуют использовать операционные усилители.
В чем заключается разница подключения
Как подключить светодиод к сети 220 В? Проблема изначально кроется в технических характеристиках LED. Его работа основана на пропускании сквозь кристаллы определенного тока, вследствие чего они светят. Драйвер призван контролировать подачу тока на кристалл, ограничивая ее тем количеством, которое необходимо конкретно для этих моделей подключаемых светодиодов.
Пример подключения драйверадля декоративной подсветки светодиодами
Ключевой особенностью драйвера является подача на светодиод постоянного тока, а не переменного, который протекает в обычной бытовой розетке. Переменный ток 220 В подает на кристаллы синусоподобное напряжение с частотой 50 Гц. Это означает, что его направление меняется 50 раз в секунду. При этом если включить светодиод, он будет светиться только при основной подаче тока и гаснуть при обратной. На схеме это выглядит так.
Зависимость свечения кристаллаот направления переменного тока
Глядя на график, становится понятно, что LED не будет светить постоянно, а будет мигать с такой же частотой, как и сам ток – 50 раз в минуту. Для человеческого глаза такое мерцание не различимо, и он будет видеть обычный равномерный свет. Но это не значит, что подключение светодиода к сети выполнено правильно.
Светодиод способен пропускать ток только в одном направлении, обратные колебания приводят к разрушению его структуры и последующей деградации. Для того чтобы светодиод не вышел из строя, к нему необходимо применять защитные меры.
Техника безопасности и рекомендации по эксплуатации
Для исключения несчастных случаев и порчи имущества следует соблюдать следующие правила:
- работа с электрическими приборами должна осуществляться сухими руками. Также это касается погодных условий. Если на улице повышенная влажность или идет дождь, то от монтажных мероприятий следует отказаться;
- перед установкой прожектора необходимо обязательно удостовериться в отсутствии электрического тока;
- напряжение сети должно быть не больше 220 В;
- запрещается установка прожектора вблизи от мощных электрических приборов;
- не допускается применение химических средств рядом с прожектором.
Для поддержания осветительного прибора в хорошем состоянии, а также продления срока его службы необходимо соблюдать требования по уходу за ним. Стоит отметить, что светодиодный прожектор не нуждается в излишнем обслуживании.
Прежде всего нужно отказаться от чистящих средств, в основе которых используется растворитель. Если прибор вышел из строя, достаточно отсоединить его от сети, при этом не разбирая. Осуществляя установку осветительного прибора, необходимо обеспечить ему заземление.
В данной статье мы ответили на вопрос, как подключить прожектор к сети, а также рассмотрели конструктивные особенности и основные требования при использовании этого осветительного прибора.
Помимо яркого и мощного освещения, данное устройство обеспечивает безопасность при эксплуатации как для людей, так и для природной среды, а также экономию электроэнергии, обусловленную применением светодиодных источников света. Несмотря на достаточную простоту, монтажные мероприятия все-таки рекомендуется доверить специалистам.
Схемы с емкостными конденсаторами
Подключение мощных светодиодов с емкостными конденсаторами, на первый взгляд, осуществляется довольно простой. Однако в данной ситуации необходимо в первую очередь учитывать мощность резисторов
Также важно помнить, что по параметрам драйверы светодиодов могут довольно сильно отличаться. В связи с этим подбирать конденсаторы для устройства необходимо очень тщательно
В первую очередь оценивается непосредственно блок питания, к которому подсоединяется усилитель. Если рассматривать модификации с пороговым напряжением в 20 В, то емкостный конденсатор в данном случае можно использовать один.
В противном случае их устанавливается два для решения проблем с нелинейными искажениями. В свою очередь чувствительность устройства всегда можно настроить при помощи котроллера. Непосредственно драйвера чаще всего используются импульсного типа. В свою очередь модуляторы можно устанавливать разнообразные. Проблемы с полярностью в данном случае возникнуть не должны. В итоге при блоке питания в 20 В пороговый ток обязан поддерживаться на уровне 3 А. При этом частотность может колебаться в зависимости от скачков напряжения в сети.
Последовательное подключение
При последовательном же подключении светодиодов через них протекает один и тот же ток. Количество светодиодов не имеет значение, это может быть всего один светодиод, а может быть 20 или даже 100 штук.
Например, мы можем взять один светодиод 2835 и подключить его к драйверу на 180 мА и светодиод будет работать в нормальном режиме, отдавая свою максимальную мощность. А можем взять гирлянду из 10 таких же светодиодов и тогда каждый светодиод также будет работать в нормальном паспортном режиме (но общая мощность светильника, конечно, будет в 10 раз больше).
Ниже показаны две схемы включения светодиодов, обратите внимание на разницу напряжений на выходе драйвера:
Так что на вопрос, каким должно быть подключение светодиодов, последовательным или параллельным, может быть только один правильный ответ – конечно, последовательным!
Количество последовательно подключенных светодиодов ограничено только возможностями самого драйвера.
Идеальный драйвер может бесконечно повышать напряжение на своем выходе, чтобы обеспечить нужный ток через нагрузку, поэтому к нему можно подключить бесконечное количество светодиодов. Ну а реальные устройства, к сожалению, имеют ограничение по напряжению не только сверху, но и снизу.
Вот пример готового устройства:
Мы видим, что драйвер способен регулировать выходное напряжение только лишь в пределах 64…106 вольт. Если для поддержания заданного тока (350 мА) нужно будет поднять напряжение выше 106 вольт, то облом. Драйвер выдаст свой максимум (106В), а уж какой при этом будет ток – это от него уже не зависит.
И, наоборот, к такому led-драйверу нельзя подключать слишком мало светодиодов. Например, если подключить к нему цепочку из 10-ти последовательно включенных светодиодов, драйвер никак не сможет понизить свое выходное напряжение до необходимых 32-36В. И все десять светодидов, скорее всего, просто сгорят.
Наличие минимального напряжения объясняется (в зависимости от схемотехнического решения) ограничениями мощности выходного регулирующего элемента либо выходом за предельные режимы генерации импульсного преобразователя.
Разумеется, драйверы могут быть на любое входное напряжение, не обязательно на 220 вольт. Вот, например, драйвер превращающий любой источник постоянного напряжения (блок питания) от 6 до 20 вольт в источник тока на 3 А:
Вот и все. Теперь вы знаете, как включить светодиод (один или несколько) – либо через токоограничительный резистор, либо через токозадающий драйвер.
Цоколевка светодиодов
Под цоколевкой принято понимать внешний вид (исполнение корпуса) светодиода. Каждый производитель выполняет светодиод в своем корпусе, в зависимости от структуры и назначения. Единого стандарта, как в светодиодных лампах не существует, напомню, самые распространенные цоколи ламп: е27, е14.
Какого-либо единого стандарта цоколевки светодиодов не существует. Каждый производитель делает так, как считает нужным. В итоге, на прилавках магазинов мы получаем множество светодиодов, различающихся по форме, внешнему виду, дизайну.
Из всего множества все – таки можно выделить пару небольших групп. Например, самые распространенные простые светодиоды выполняются в прозрачном или цветном корпусе из прочного пластика или стекла, и имеют форму цилиндра, край которого чаще всего закруглен.
Более дорогие светодиоды состоят из нескольких частей: основания и линзы. На основании расположены токопроводящие дорожки, а линза выполнена из качественного материала, которая служит в качестве рассеивателя света.
Основание изготавливают в виде круга или квадрата. Полярность на квадрате обозначают скошенным уголком. Например, светодиоды CREE, выглядят следующим образом:
Нестандартная цоколевка может встретиться при ремонте электронных блоков и вызвать определенные затруднения в определении полярности. По цоколевке светодиода определяется его полярность, знание которой требуется для ремонта или правильного монтажа светодиода в схему.
Не всегда есть возможность определить полярность привычными способами, из-за нестандартной цоколевки светодиода: особенное строение корпуса, утолщение одного из светодиодов и другие причины. Поэтому, в таких случаях, как не крути, придется прибегнуть к электрическому замеру.
Обозначение светодиодов на схеме
Светодиод на схеме обозначается в виде обычного диода с двумя стрелками, направленными в сторону, обозначающее излучение света. Сам диод может изображаться, как в круге, так и без него.
Со стороны носика треугольника находится катод, а со стороны задней части треугольника – анод. Иногда на схеме можно увидеть обозначения анода и катода в виде букв А и К или + и -, что соответственно обозначает, анод и катод или плюс и минус.
Подписывается полупроводниковый элемент на отечественных схемах буквами HL (HL1, HL2 и т.д.) – это по ГОСТ. В зарубежных стандартах обозначение светодиода на схеме аналогично российскому. Подписывается он уже другим словом — LED (LED1, LED2, LED3 и т.д.), что в переводе с английского расшифровывается как light — emitting diode – светоизлучающий диод.
Вторым отличием является буквенное обозначение фоторезистора – VD или VB, что означает фотоэлемент.
В заключении хочется сказать, что маркировка очень важна. Знание ее расшифровки, позволяет определить основные параметры светодиода, не открывая даташит. Запомнить маркировку всех производителей нереально, да и не к чему, достаточно знать расшифровку основных брендов.
Напряжение питания светодиодов
Несмотря на то что электрический параметр №1 для светодиода – это номинальный ток, часто для расчётов необходимо знать напряжение на его выводах. Под понятием «напряжение светодиода» понимают разницу потенциалов на p-n-переходе в открытом состоянии.
Оно является справочным параметром и вместе с другими характеристиками указывается в паспорте к полупроводниковому прибору. 3, 9 или 12 вольт… Часто в руки попадают экземпляры, о которых ничего не известно. Так как узнать падение напряжения на светодиоде?
Прекрасной подсказкой в этом случае является цвет свечения, внешняя форма и размеры полупроводникового прибора. Если корпус светодиода выполнен из прозрачного компаунда, то цвет его остаётся загадкой, разгадать которую поможет мультиметр.
Для этого переключатель цифрового тестера переводят в положение «проверка на обрыв» и щупами поочерёдно касаются выводов светодиода. У исправного элемента в прямом смещении будет наблюдаться небольшое свечение кристалла. Таким образом, можно сделать вывод не только о цвете свечения, но и о работоспособности полупроводникового прибора.
Светоизлучающие диоды разных цветов изготавливают из различных полупроводниковых материалов. Именно химический состав полупроводника во многом определяет напряжение питания светодиодов, точнее, падение напряжение на p-n-переходе.
В связи с тем, что в производстве кристаллов используют десятки химических соединений, точного напряжения для всех светодиодов одного цвета не существует. Однако есть определённый диапазон значений, которых зачастую достаточно для проведения предварительных расчетов элементов электронной цепи.
С одной стороны, размер и внешний вид корпуса не влияют на прямое напряжение светодиода. Но, с другой стороны. через линзу можно увидеть количество излучающих кристаллов, которые могут быть соединены последовательно. Слой люминофора в SMD светодиодах может скрывать целую цепочку из кристаллов.
Ярким примером является миниатюрные многокристальные светодиоды от компании Cree, падение напряжения на которых зачастую значительно превышает 3 вольта. В последние годы появились белые SMD светодиоды, в корпусе которых размещено 3 последовательно соединённых кристалла. Их часто можно встретить в китайских светодиодных лампах на 220 вольт.
Естественно убедиться в исправности LED-кристаллов в такой лампе при помощи мультиметра не удастся. Стандартная батарейка тестера выдаёт 9 В, а минимальное напряжение срабатывания трёхкристального белого светоизлучающего диода – 9,6 В. Также встречаются двухкристальная модификация с порогом срабатывания от 6 вольт.
Самые точные данные о прямом падении напряжения на светодиоде можно получить путём проведения практических измерений. Для этого понадобится регулируемый блок питания (БП) постоянного тока с напряжение от 0 до 12 вольт, вольтметр или мультиметр и резистор на 510 Ом (можно больше). Лабораторная схема для тестирования показана на рисунке.
Здесь всё просто: резистор ограничивает ток, а вольтметр отслеживает прямое напряжение светодиода. Плавно увеличивая напряжение от источника питания, наблюдают за ростом показаний на вольтметре. В момент достижения порога срабатывания светодиод начнёт излучать свет.
В какой-то момент яркость достигнет номинального значения, а показания вольтметра перестанут резко нарастать. Это означает, что p-n-переход открыт, и дальнейший прирост напряжения с выхода БП будет прикладываться только к резистору. Текущие показания на экране и будут номинальным прямым напряжением светодиода.
Если ещё продолжить наращивать питание схемы, то расти будет только ток через полупроводник, а разность потенциалов на нём изменится не более чем на 0,1-0,2 вольт. Чрезмерное превышение тока приведёт к перегреву кристалла и электрическому пробою p-n-перехода.
Если рабочее напряжение на светодиоде установилось около 1,9 вольт, но при этом свечение отсутствует, то возможно тестируется инфракрасный диод. Чтобы убедиться в этом, нужно направить поток излучения на включенную фотокамеру телефона. На экране должно появиться белое пятно.
В отсутствии регулируемого блока питания можно запитать светодиод «кроной» на 9 В. Также можно задействовать в измерениях сетевой адаптер на 3 или 9 вольт, который выдаёт выпрямленное стабилизированное напряжение, и пересчитать номинал сопротивления резистора.
Светодиодная лента 220В – что это такое и как ее подключить
Обычная светодиодная лента имеет стандартную длину 5 метров. Как правило, она разделена на 5-сантиметровые отрезки. Разрезать ленту можно исключительно по данным линиям, которые в некоторых случаях даже выполнены в виде перфорации. Каждый такой 5-сантиметровый блок содержит несколько излучающих кристаллов, соединенных последовательно – это сводит напряжение для каждого кристалла до требуемого значения.
В зависимости от того, на какое напряжение рассчитана вся лента, на каждом 5-сантиметровом участке находится определенное количество светодиодов, кратное трем:
- если лента рассчитана на 12 вольт, то на одном отрезном участке расположено 3 кристалла;
- если на 24 вольта, то кристаллов уже 6;
- если на 110 вольт, то излучателей уже 30, а отрезной участок имеет длину не 5, а уже 50 см;
- а если светодиодная лента рассчитана на 220В, подключение которой будет подробно разобрано далее, то светодиодных кристаллов на полуметровом отрезном участке будет уже целых 60.
В лентах, рассчитанных на подключение к сети 220 вольт напрямую, каждый SMD-кристалл потребляет 3,5 Вольта: это диоды SMD 5630; 3528; 5050; 2835; 3014. На отрезном блоке сосредоточено 60 соединенных последовательно диодов, то есть, общее потребляемое напряжение в теории должно составлять 210 В.
Однако сеть дает 220 В, а иногда даже 230 В, и особенностью 220-вольтовых лент с особо яркими излучателями SMD 5630 является то, что диоды в них работают с небольшим перенапряжением – на каждый кристалл приходится максимум 3,83 Вольта.
У led-лент с 60 кристаллами на 0,5 метра диоды располагаются в 2 ряда. При этом если посчитать, то получается, что на стандартном 5-сантиметровом участке располагается 6 кристаллов с крайне высокой светимостью. Кроме того, такая светодиодная лента на 220В без блока питания используется для оформления объектов, располагающихся вне ограждающих конструкций – под открытым небом.
Ленты с диодами SMD 5630 имеют следующие уникальные характеристики энергопотребления:
- Потребляемая мощность составляет 10 Вт/п.м. длины ленты.
- Светоизлучающие диодные кристаллы имеют крайне высокий КПД – более 83% потребляемой ими энергии превращается в полезный свет, однако, оставшиеся 17% неизбежно переходят в тепло. В результате лента изрядно нагревается. Чтобы не допустить оплавления такой ленты, для ее изготовления в качестве основы задействуется толстая фольга, покрываемая термостойким полимером с обеих сторон. Металл не только обеспечивает прочность всей ленты в целом, но и эффективно рассеивает тепло по всей своей длине.
Как же подключить светодиодную ленту на 220 Вольт? Казалось бы, подключение диодной ленты к 220 В можно осуществлять по-простому, то есть, напрямую. Но диоды устроены так, что они пропускают ток в одну сторону и не пропускают в другую. Поэтому если подключение светодиодной ленты к сети 220 В осуществить без предварительно вставленного в цепь выпрямителя, то все кристаллы на ленте будут мигать с частотой 50 раз в секунду.
Такая, и даже в 2 раза большая частота (то есть, 100 Гц), согласно СанПИН, не является допустимой, особенно в жилых помещениях. Для человеческого глаза такой свет будет восприниматься, как мерцающая рябь, от чего будут быстро уставать глаза.
Перед тем как подключить диодную ленту к 220 В переменного тока, следует вставить в цепь выпрямитель. Это устройство содержит несколько конденсаторов, которые накапливают в себе заряд, когда ток идет в одном условном направлении и выдают этот заряд в цепь, когда направление движения тока меняется. Таким образом, выпрямитель делает из переменного тока постоянный без какого-либо понижения напряжения.
Однако и на этом еще не все. Работа выпрямителя «груба». Его главная функция – это обеспечить, чтобы электроны следовали в одном направлении. Поэтому схема подключения светодиодной ленты к 220 В, помимо выпрямителя, должна включать в себя еще и контроллер. Этот прибор – аналог выпрямителя, только в его задачу входит стабилизация, сглаживание любых, даже очень слабых, колебаний разности потенциалов. Современные выпрямители, как правило, содержат внутри себя блок контроллера, что позволяет им выдавать ровный ток и даже сглаживать колебания в сети.
Если речь идет о светодиодной ленте 220В RGB, которая является цветной, то ее монтаж должен производиться через такой же RGB-контроллер.
Как проверить светодиод мультиметром
Один из способов проверки рабочего состояния светодиодов – тестирование мультиметром. Таким прибором можно диагностировать светодиоды любого исполнения. Перед тем как проверить светодиод тестером, переключатель прибора устанавливают в режиме «прозвонки», а щупы прикладывают к выводам. При замыкании красного щупа на анод, а черного на катод, кристалл должен излучать свет. Если поменять полярность, на дисплее прибора должна отображаться показание «1».
Схема проверки светодиода с помощью цифрового мультиметра
Тестирование LED-приборов можно произвести, не используя щупы. Для этого в отверстия, расположенные в нижнем углу прибора, анод вставляют в отверстие с символом «Е», а катод – с указателем «С». Если светодиод в рабочем состоянии – он должен засветиться. Этот метод тестирования подходит для светодиодов с достаточно длинными контактами, очищенными от припоя. Положение переключателя при таком способе проверки не имеет значения.
Как проверить светодиоды мультиметром, не выпаивая? Для этого необходимо припаять к щупам тестера кусочки от обычной скрепки. В качестве изоляции подойдет текстолитовая прокладка, которая укладывается между проводами, после чего обрабатывается изолентой. На выходе получается своеобразный переходник для подключения щупов. Скрепки хорошо пружинят и надежно фиксируются в разъемах. В таком виде можно подключить щупы к светодиодам, не выпаивая их из схемы.
Способы подключения светодиодной ленты в автомобиле
Существует несколько вариантов подключения осветительного устройства в автомобиле. Большой популярностью пользуется самый простой вариант – с применением резистора. Также используются методики, связанными с использованием линейного или импульсного стабилизатора.
Каждая методика отличается своими индивидуальными особенностями и последовательностью действий. Что касается инструментов и материалов, то их перечень во всех случаях схож.
Необходимые инструменты и материалы
Установка светодиодной ленты на автомобиль через прикуриватель осуществляется достаточно просто. Для проведения монтажных потребуется подготовить такие инструменты, как:
- влагозащитная RGB лента на четыре контакта или иной подходящий вариант осветительного прибора;
- четыре специальных клеммы или надежных коннектора;
- многожильный провод, желательно с цветами проводков как на контроллере;
- контроллер на 12 В, который подходит для легкового авто;
- специальный силиконовый герметик.
После подготовки всех необходимых инструментов и устройств можно приступать непосредственно к монтажным работам.
Простое подключение
В процессе работы двигателя напряжение в машине варьируется в достаточно широком диапазоне. Чтобы избежать перегрузок в напряжении, специалисты советуют установить специальный резистор в разрыв одного из питающих осветительный прибор проводов.
Основным преимуществом подобного варианта включения является обеспечение долговечности светодиодов, что достигается за счет отсутствия перенапряжения светильников.
При значениях напряжения ниже максимального уровня автоматически снижается светоотдача. При перепадах показателей будет проявляться эффект «ярко-тускло».
Если уровень яркости свечения светодиодной ленты не является достаточно важным фактором, можно проводить именно такое подключение.
Подключение через линейный стабилизатор
Подобный вариант подключения позволит забыть о таком явлении, как самопроизвольное изменение уровня яркости свечения в процессе езды. Это основано на установке линейного стабилизатора. Его роль в данной схеме возьмет на себя специальная интегральная микросхема. Довольно часто стабилизатор применяется на базе LM7812, что собрана в корпусе категории ТО220 с током нагрузки примерно 1 А
Но при этом есть одно важное условие
Это интересно: Как и где можно получить красивые номера на авто? 3 реальных способа
Для обеспечения максимально стабильной работы подобной схемы, требуется проследить за тем, чтобы напряжение было ниже 14 Вт. Определенный запас, равный двум вольтам, требуется для сохранения оптимальной работоспособности LM7812. Нарушение данного правила может привести к срыву стабилизации и появлению на выходе импульсного сигнала. Именно по причине подобного недостатка интегральные стабилизаторы применяются достаточно редко.
В качестве альтернативы стоит использовать специальный регулируемый стабилизатор LM317. Он обладает более высокими техническими характеристиками. Посредством применения резистора есть возможность настроить на сеть UВЫХ=11 В. Это позволит стабильно работать с установленным на аккумуляторе напряжении от 12,3 В.
Если установить сниженный уровень питания, лента будет работать в особом щадящем режиме, а это не всегда является преимуществом.
Подключение через импульсный стабилизатор
Подобный вариант самостоятельного подключения светодиодной ленты является самым оптимальным на данный момент. Импульсный стабилизатор можно сделать своими руками, используя набор Мастер Кит, или приобрести готовую заводскую плату, предварительно собранную на базе LM2596. Готовое решение обойдется по сумме от 300 до 700 рублей, все зависит от максимального уровня тока нагрузки.
В процессе выбора предпочтение стоит отдать плате, которая с тыльной стороны надежно фольгирована обычным алюминием, что в состоянии обеспечить оптимальный отвод тепла на радиатор.
Данный вариант монтажа стабилизатора характеризуется большим количеством преимуществ. Среди них можно отметить наличие встроенной тепловой защиты и ограждения от перегрузок. Обеспечивается высокий коэффициент полезного действия, а также полное отсутствие перегрева при напряжении до 0,5 А. Метод позволяет параллельно соединить несколько светодиодных лент одновременно, причем разного типа. Также обеспечивается высокая степень надежности.