Заземление и зануление: разбираемся в чем разница

Как работает заземляющий контур

Любой подъезд многоэтажного дома можно смоделировать по той же схеме. Но квартиры, распределенные по трём имеющимся фазам, потребляют электричество как попало, при чём это потребление постоянно меняется. Конечно, в среднем в точке подключения домового кабеля в распределительном пункте (РП) разница в токах на фазах составляет не более 5% от номинальной нагрузки. Однако в редких случаях это отклонение может быть выше 20%, и такое явление сулит серьёзные проблемы.

Давайте на мгновение представить, что электрический стояк, а точнее, его рамная часть, на которую прикручены все нулевые провода, оказался изолированным от земли. Столь высокая разница между потреблением квартир на разных фазах выливается в следующую закономерность:

  1. На наиболее нагруженной фазе происходит падение напряжения соразмерно нагрузке.
  2. На оставшихся фазах это напряжение, соответственно, возрастает.

Нулевой провод, соединённый с контуром заземления, служит запасным источником электронов как раз на такой случай. Он помогает устранить асимметрию нагрузок и избежать появления перенапряжений на смежных ветках трёхфазной цепи.

Требования к защитному заземлению

Защитное заземление – это наиболее жесткое устройство, чем зануление цепи. Здесь предусмотрена прокладка отдельной шины, довольно небольшого уровня сопротивления, которая идет к системе заземлителей, забитых в землю в виде треугольника.

Расчет защитного заземления, требует знания множества формул и наличия множества исходных данных. Поэтому принято для жилого фонда применять типовые проекты контура заземления для каждого региона.

Установка зануления предусматривает прокладку шины нейтрали или любого другого способа отвода тока в однофазной цепи. При этом, значения сопротивлений каждого проводника зануления до подстанции или питающего трансформатора, складываясь, образуют значение сопротивления защитного устройства.

Эта величина может изменяться, но требования к защитному заземлению и занулению, предусматриваю общее значение максимально возможного уровня сопротивления цепи.

Бытовое заземление

Как правило, системы электроснабжения, должны иметь сопротивление защитного заземления, должно быть от 4 Ом, до 30 Ом. Для обустройства, как правило, применяют стальные уголки и полоса шириной 40 мм. Предусматривают использование медной шины, достаточного сечения, согласно ГОСТу. Это обязательное требование.

При использовании защитного проводника с медным проводом 0,5 мм2 нам не хватит и 100 метров провода для достижения критического значения. Наиболее строгие требования предъявляются при обслуживании участков:

  1. Установки, с напряжением цепи до 1000. В, оснащаются устройством, сопротивление которого, не должно превышать 0,5 Ома. Значение заземленного контура измеряют при помощи специального измерительного прибора – измерителем сопротивления. Это измерение проводится двумя дополнительными заземлителями. Разведя их на определенное расстояние, выполняем замер, затем сдвигая электрод, проводим несколько замеров. Самый худший результат принимается за номинальное значение.
  2. Для обслуживания цепи трансформатора, других источников питания, при величинах напряжения от 220 В до 660 В – величина сопротивления заземления должна быть от 2 Ом до 8 Ом.

Производственное защитное заземление

Использование дополнительных мер для выравнивания величин потенциала – это основная «обязанность» применения защитного обустройства производственных мощностей. Для достижения надежной защиты, все металлические детали конструкций и устройств, а коммуникационные трубопроводы подсоединяются на заземляющий проводник.

В жилых помещениях, так следует оборудовать ванные комнаты и стальной водопровод, канализацию, и трубы отопления. В наше время пускай и редко, но они встречаются. На промышленных объектах заземляют:

  • приводы электрических машин;
  • корпуса каждой электроустановки, находящейся в помещении;
  • коммуникации металлических труб, металлоконструкции;
  • защитные оплетки электрокабелей , с напряжением постоянного тока до 120 В;
  • электрощитовые, различные корпуса системы электропроводки.

Детали, не требующие защиты:

  • металлические корпуса приборов и оборудования, установленных на стальной платформе, главное – обеспечение надежного контакта между ними;
  • разнообразные участки с металлической арматурой, установленная на деревянных конструкциях, исключение составляют объекты, где защита распространяется и на эти объекты;
  • корпуса электрооборудования, имеющие 2, 3 классы безопасности;
  • при вводе в здание электропроводки, с напряжением не выше 25 В, и прохода их сквозь стену из диэлектриков.

В заключение необходимо отметить.

После монтажа каждого из видов защиты, необходимо выполнить проверку величины сопротивления защиты. После этого составляется акт проверки. Замеры, проводят летом и зимой, в это время грунт имеет наибольшее сопротивление.

Проверку жилого фонда рекомендуется проводить раз в год. Помните о необходимости оснащения щитовой автоматами размыкателями цепи и защитным устройством от утечек тока.

Что такое нулевой защитный и нулевой рабочий проводники

Проводники бывают нулевыми защитными и нулевыми рабочими, каждый из них имеет свое назначение, способ подключения и допустимые функциональные нагрузки в электрической цепи

Перед тем как приступать к выполнению работ по созданию защитного контура, важно получить минимальные, но необходимые знания

Назначение проводников

Нулевой рабочий проводник имеет еще одно название – проводник сети. По нему протекает нагрузочный ток. На схеме он обозначается латинской буквой «N».

Основная задача нулевого защитного проводника — обеспечивать безопасность. В системах с нулевым выводом глухозаземленного трансформатора он коммутирует токопроводящие части электрических приемников и нулевую точку питающего трансформатора. В аварийных или нештатных ситуациях они оказываются под ударом.

Защите от косвенного прикосновения подлежат следующие электрические элементы (согласно ПУЭ 1.7.76):

  • корпуса, изготовленные из металла, портативных и передвижных устройств;

В качестве защиты используется коммутация этих устройств с глухозаземленной нейтралью в системах ТN или ТТ, IТ. Последние две с заземлением.

Разница между нулевым защитным и рабочим проводниками

Прежде чем приступать к выполнению работ, важно ознакомиться с особенностями и характеристиками проводников, провести сравнительный анализ

НаименованиеОписание
N – нулевой рабочий проводВместе с фазным проводом принимает участие в непрерывном и беспрепятственном обеспечении электропитанием бытовой техники и прочих электрических приборов. По нему постоянно протекает рабочий ток.
РЕ – нулевой защитный проводНе принимает участия в обеспечении электрических приборов и бытовой техники электричеством. Основная задача – защита от косвенного взаимодействия в сетях с глухозаземленной нейтралью.

Обозначение нулевого защитного проводника

Чаще всего маркировка нулевых защитных жил имеет желто-зеленый окрас. В ПУЭ устанавливаются основные правила выбора сечения токоведущего провода.

РЕ обладает собственным контуром заземления, либо его основные задачи могут быть возложены и объединены с нулевым проводом, в данном случае все зависит от установленной системы заземления в строительном сооружении. Объединение двух проводников получило название — PEN, площадь его сечения должна быть не менее параметров сечения рабочего провода N.

Правила прокладки

Прежде чем приступать к монтажу, требуется ознакомиться с правилами, которые предъявляются к прокладке РЕ:

  • В линии должны отсутствовать устройства, которые могут стать причиной разъединения, нарушения целостности цепи, например, удаляемые вставки, выключатели, автоматы защиты и предохранители.
  • Все оборудование и токоведущие части коммутируются с защитным заземлением напрямую.
  • Запрещено соединение нескольких электрических приборов по принципу шлейфа.
  • На распределительной шине РЕ выделяется отдельная клемма (зажим). Запрещается к одной клемме одновременно подсоединять нулевой защитный и рабочий провод.
  • Если оборудование защитного отключения УЗО установлено в распределительном щите, N и защитный провод не должны иметь контактов на одной линии. Если пренебречь этим правилом, у УЗО будет множество ложных срабатываний.
  • У рабочих проводов площадь сечения должна быть больше, чем сечение защитного заземления.
  • Нулевая защитная жила должна быть проложена около рабочих проводов.
  • Для заземления нельзя использовать предметы и коммуникации, не предназначенные для этого. Чаще всего в данном случае не по назначению используется арматура в стенах, трубопровод и батареи отопления.
  • Запрещается подключать РЕ к независимым шинам заземления, если такие в электрической цепи предусмотрены.

Виды заземления

В зависимости от функций РЕ заземление делится на несколько видов.

Старые системы заземления характеризуются объединением по всей сети нулевого и защитного рабочего провода, поэтому отдельным РЕ они не оснащены. Согласно постановлению ПУЭ с 2017 года запрещается эксплуатировать такие системы. При строительстве новых сооружений прибегают к более безопасным и усовершенствованным системам заземления.

Характерная особенность новых видов – выполнение отдельных контуров для защитного и рабочего заземления. Он предусматривает подвод также к частным сетям, выполняется с учетом всех требований независимости N и РЕ. Если речь идет о системе ТN-C-S, в частных сетях допускается объединение данных проводников.

Что надёжнее

Сравнивая заземление и зануление по надежности и ответить на вопрос что лучше, необходимо исходить из их назначения, а также из следующих соображений:

  1. Эффективность каждого из этих видов защиты зависит от конкретных условий их применения.
  2. В соответствии с требованиями ПУЭ зануление применяется лишь в тех случаях, когда нет возможности сделать качественное заземление (этим они и отличаются, по сути).
  3. Поскольку скорость срабатывания включенного в фазную цепь автомата или предохранителя не очень высока – зануление считается менее надежным, чем мгновенно срабатывающее УЗО или работающее постоянно заземление.

Еще одним существенным отличием заземления от зануления, заметно снижающим надежность последнего, является зависимость аварийного тока от точки пробоя изоляции на корпус устройства. Если это случается, например в самом начале обмотки электродвигателя, то ток в цепи будет максимальным и защита сработает чётко.

Схема работы системы зануления при пробое изоляции (рисунок слева). Схема поражения человека электрическим током без системы зануления и заземления (рисунок справа)

В случае, когда пробой изоляции окажется ближе к нулевому рабочему проводнику – разность напряжений между точкой замыкания и проводом PEN окажется равной нулю. Вследствие этого оно может не сработать совсем. Именно поэтому защитное зануление используется чаще всего как вынужденная мера, к которой прибегают в отсутствии возможности обустроить надежное заземление (в многоквартирных домах старой застройки, например).

При рассмотрении вопроса о том, как сделать защиту в частном доме, последний решается намного проще. В данном случае все условия для обустройства полноценного заземления электроустановок и электроприборов налицо, защитный контур можно сделать под окном в огороде, например. Последующие действия сводятся к простому соединению ЗК посредством толстого медного проводника с главной заземляющей шиной вводного щитка.

В заключение отметим, что заземление и зануление – это различные подходы к одному и тому же техническому решению, обеспечивающему надежную защиту человека от поражения электрическим током. Выбор того, что лучше, зависит от целого ряда причин, определяемых условиями эксплуатации защищаемого оборудования, а также от преследуемых целей.

Предлагаем Вам ознакомиться с видео о том, чем отличается заземление от зануления.

Как обыкновенный человек может попасть под действие тока в собственном жилище, на производстве и в любом другом месте: краткое пояснение физических процессов

Правила безопасности учитывают несколько вариантов развития подобных событий и предлагают технические решения для спасения от них

Это важно хорошо понимать

Какие опасности скрыты в схеме существующей бытовой сети

Современные квартиры буквально напичканы электрическими помощниками, облегчающими наш быт. Их производители стремятся максимально обезопасить пользователей, но от них не все зависит.

Любая техника имеет ограниченный ресурс, а качество ее изготовления, складского хранения и эксплуатации не всегда соответствует техническим нормативам. Поломки возникают случайно в самых неожиданных местах.

Например, через сгоревший ТЭН с нарушенной изоляцией фаза элементарно распространяется через окружающую его водную среду в стиральной или посудомоечной машине.

Подобное повреждение диэлектрического слоя происходит довольно часто. При включении электрического прибора с нарушенной изоляцией высокий потенциал фазы переходит на токопроводящий корпус.

Стоит человеку до него дотронуться, как он попадает под напряжение, а через его тело начинает протекать опасный ток.

Его величина по закону Ома ограничивается только общим сопротивлением участка цепи, которое носит случайный характер. Сила протекающего тока может иметь значения от десятых долей ампера и значительно больше. Исход получения электротравмы предсказуем.

Если же корпус бытового прибора надежно заземлен, то картина протекания тока через человека резко меняется.

Сопротивление заземляющего контура строго регламентируется и поддерживается на безопасном пределе. За счет этого потенциал фазы стекает с корпуса. Когда к нему дотронется человек, то создаваемая нагрузка через его тело своей силой не сможет причинить большого вреда организму.

А чтобы его еще уменьшить в схему вводятся:

  • автоматические выключатели, реагирующие даже на перегруз, а не только короткие замыкания;
  • дифференциальные автоматы и УЗО, срабатывающие от утечек.

Однако в этом вопросе тоже не все так просто, ибо даже правильно настроенный автомат может банально не сработать из-за того, что при его выборе Таких случаев встречается много: проводка выгорает (возможно и здание), а защита не отрабатывает.

По этой причине включение УЗО в схему обязательно: оно отработает от возникшей утечки.

Как можно получить удар током от случайных источников напряжения

Жилые и производственные помещения содержат в своей конструкции не только закрытое изоляцией электрическое оборудование, но и массу технических систем (водопроводы, газопроводы, антенны, воздуховоды, арматура стен, рельсы и шахты лифтов…) выполненных из стальных или иных токопроводящих материалов.

В силу различных обстоятельств на них может быть подано напряжение (удар молнии, пробой изоляции бытовой сети, ошибки электриков или домашних мастеров…).

Когда человек прикоснётся к такому предмету, то через него может потечь опасный разряд.

Его величина не предсказуема, зависит от многих случайных факторов, но она весьма опасна для жизни.

Поэтому все токопроводящие магистрали, даже не относящиеся к электрической схеме, подключаются к контуру заземления здания. Такое их соединение называется ОСУП — основная система уравнивания потенциалов. Она призвана надежно отводить случайно появляющийся опасный потенциал из зоны обитания людей.

В многоэтажных зданиях современного панельного или монолитного строительства подобные технические системы, например, трубопроводы различного назначения имеют большую протяженность, достигая нескольких сотен метров.

Если через них станет проходить ток большого разряда, то на такой длине, имеющей увеличенное сопротивление, возникает падение напряжения. Оно тоже опасно для людей, поэтому подлежит снижению.

С этой целью во всех квартирах все токопроводящие части, не относящиеся к электрической схеме (трубы, краны, батареи, даже акрилловые ванны, собирающие статическое электричество), тоже подлежат подключению к контуру заземляющего устройства здания.

Такое соединение называется ДСУП или дополнительная система уравнивания потенциалов.

Здесь тоже важно использовать защиты типа УЗО или дифавтоматы. Все эти процессы важно представлять для того, чтобы не совершать грубых ошибок и не нарушать действующие правила безопасности.

Все эти процессы важно представлять для того, чтобы не совершать грубых ошибок и не нарушать действующие правила безопасности.

А как работает заземляющая конструкция в этих ситуациях я рассказываю дальше.

Заземление и зануление в цепях переменного тока

По сути, ноль – провод синего цвета, промаркированный N. Зануление – это преднамеренное соединение либо средней точки в обмотке 3-х фазного генератора, либо соединение в нагрузке к рабочему нолю. Основных функций у зануления две: 1 – рабочая функция и 2 — защитная функция. Рабочая функция ярче всего проявляется в схеме распределения электроэнергии в многоквартирном доме. Изначально ввод электричества выполняется только с помощью трехфазного тока, который равномерно распределяется по квартире. В качестве примера допустим, что в одном конкретном подъезде имеется 36 квартир. Следовательно, распределение нагрузки должно быть произведено максимально сбалансированно и равномерно: на фазу A подключаем 12 квартир, на фазу В 12 квартир, а на фазу С, естественно, оставшиеся 12 квартир. Как бы не старались проектировщики сбалансировать схему потребления, практика однозначно говорит о том, что достичь баланса и равномерность нагрузки никогда на 100% не удается – кто-то тратит электричества больше, а кто-то меньше. Поэтому и была придумана линия N – рабочий ноль. Основная цель рабочего ноля – восстановить баланс напряжений по фазам, то есть не дать возникнуть перекосу напряжений. К слову, именно внезапное отключение нулевого проводника может привести к тому, что в некоторых квартирах возникнет молниеносный всплеск рабочего напряжения до отметки 380 В. На жаргоне электриков данное явление называют отгоранием или отвалом ноля.

Трехфазная система требует наличие заземления и зануления средней точки рабочих обмоток, соединенных по схеме звезда. Чтобы четко понимать разницу между занулением и заземлением, давайте обратимся к стандартной схеме включения нагрузки к трехфазному источнику питания по схеме Y (звезда). Если мы рассматриваем в качестве нагрузки трехфазный трансформатор, трехфазный асинхронный электродвигатель, трехфазную печь, то система будет функционировать, будучи подключенной с помощью трех проводов с фазами A, B, С и нулевого провода N. По сути, если мы рассматриваем электроустановки на производстве, то наличие четвертого проводника выполняет чисто защитные функции. При пробое изоляции обмоток трехфазного электродвигателя высокий потенциал устремляется на корпус устройства, который находится в прямой гальванической связи с проводом N, то есть рабочим нолем. Следовательно, при таком подключении произойдет короткое замыкание, что вызовет отключение трехфазного автомата защиты.

Как определить фазу и ноль без приборов

Иногда бывают ситуации, когда отвертки для определения фазы либо мультиметра под рукой нет, но нужно выяснить, какой провод чему соответствует. Поэтому следует ориентироваться по цветовой маркировке проводов силового кабеля. В отношении маркировки проводов существует стандарт IEC 60446-2004, которого должны придерживаться производители кабелей, а также электромонтажники, выполняющие подключение той или иной электроарматуры.

Чтобы определить по цвету провода, какому проводнику он соответствует, нужно придерживаться следующей маркировки:

  • синий или голубой — ноль;
  • коричневый — фаза;
  • заземление — зелено-желтый.

Однако фазный провод бывает не только коричневым. Часто встречаются и другие расцветки, например белая или черная, но она будет отличной от земли и нуля. Визуально определить провода можно в распределительной коробке, люстре и других точках запитки.

Есть еще один вариант, как определить, где фаза и ноль при отсутствии приборов. Для этого потребуется лампа накаливания с патроном и двумя небольшими отрезками проводов. После подсоединения проводников к патрону можно начинать работу. Краем одного провода касаются трубы отопительной системы, другим — проверяемых проводников. Если в момент контакта лампа зажигается, то это указывает на наличие фазы. Труба для проведения подобного мероприятия должна быть металлической, поскольку пластиковая не проводит ток.

Нужно учитывать, что этот способ хоть и позволяет выявить фазу и ноль, но является опасным, поскольку велика вероятность получить удар электрическим током. Поэтому более безопасно для рассматриваемых целей использовать неоновые лампочки.

Как пользоваться индикаторной отверткой?

Прозвонка проводов с помощью мультиметра — что это значит и как выполняется

Какого цвета и как обозначаются провода ноля, фазы и земли в электрике?

  Что такое генератор водорода и как его сделать своими руками

Проверка электродвигателей разного вида с помощью мультиметра

Что такое петля фаза-ноль простым языком — методика проведения измерения

Как подключить и настроить датчик движения для управления освещением: электрические схемы подключения и настройка датчика

Что такое PE и PEN проводники?

PEN-проводник — это проводник, совмещающий в себе функции нулевого защитного и нулевого рабочего проводника. Он идет от подстанции и разделяется на PE и N проводники, непосредственно у потребителя.

PE-проводник — это защитное заземление, которое мы используем, например,  в квартире в розетке с заземлением. PE-проводник используется для заземления устройств, установок и приборов, где уровень напряжения не превышает 1 кВ.

Данный тип заземления используется только для гарантии безопасности. Такое заземление обеспечивает непрерывное соединение всех открытых и внешних деталей. Механизм обеспечивает стекание тока на землю, которое появилось вследствии попадания электрического тока на корпус какого-либо устройства.

PEN-проводник (объединение нулевого защитного и нулевого рабочего проводника) применяется при использовании системы заземления типа TN-C.

Защитное заземление

Защитное заземление — это система, предназначенная для обеспечения безопасности и надежности работы электроустановок. Основная цель защитного заземления заключается в предотвращении поражения электрическим током, обеспечении равновесия потенциалов и снижении риска возникновения пожара.

Электрические установки часто используются в жилых и коммерческих зданиях, а также в промышленности. Надлежащее организованное защитное заземление позволяет эффективно справляться с опасностями, связанными с электричеством.

Основными компонентами защитного заземления являются заземляющий контур и заземляющие устройства. Заземляющий контур представляет собой набор металлических элементов, которые подключены к проводнику, называемому заземляющим электродом. Заземляющие устройства обеспечивают надежное соединение заземляющего контура с землей.

Защитное заземление выполняет несколько важных функций:

  1. Обеспечивает эффективное разведение электрического тока во время аварийных ситуаций, таких как короткое замыкание или повреждение изоляции.
  2. Снижает риск возникновения пожара, особенно в областях с повышенной опасностью, таких как химические заводы и нефтяные риги.
  3. Позволяет рабочим безопасно работать с электрическими установками, так как электрический ток от соприкосновения с электродом заземления будет отведен в землю.
  4. Обеспечивает равновесие потенциалов между различными элементами системы и предотвращает статическую электрическую энергию.

В зависимости от конкретных требований и рисков, связанных с использованием электроустановок, защитное заземление может различаться по своей структуре и характеристикам. Это может включать в себя использование различных типов электродов, соединений и устройств.

Защитное заземление является неотъемлемой частью безопасной и надежной работы электрических систем

Его наличие помогает защитить людей и имущество от возникновения опасных ситуаций, связанных с электричеством, и важно уделять ему должное внимание при проектировании и эксплуатации электроустановок

Для чего необходимо заземление

Заземление

Из нормативной документации ГОСТа № 12.01.009-76 следует, что защитное заземление – это создание единого контура с землей и металлическими токоведущими частями, которые в процессе эксплуатации электротехнических приборов могут оказаться под напряжением, например, корпус микроволновой печи или стиральной машины.

Заземление требуется, чтобы при образовании напряжения в тех местах, где его быть не должно, электричество уходило в землю. Это позволяет предотвратить поражение током жителей квартиры или дома. Как правило, подобные явления наблюдаются при нарушении целостности изоляционного слоя и касания токоведущей жилы корпуса.

Типы заземления в бытовых условиях

В бытовых условиях правильно реализованная система заземления гарантирует бесперебойную работу всех электрических приборов. Во времена существования Советского Союза в домах не было большого скопления электроустановок, следовательно, такая мера безопасности практически не использовалась.

В то время широкое распространение получила эксплуатация системы TN-C, в которой заземляющий провод РЕ коммутировался с рабочим нулем в единую токопроводящую жилу РЕN, а к квартире подключался двухжильный провод. Эта система устарела, на замену пришла новая — TN-C-S. Ее особенность заключается в разъединении в распределительном щитке провода PEN на РЕ и N.

Все современные здания или строения, подлежащие модернизации, обслуживаются по трех- или пятипроводной схеме. В помещение подается три линии:

  • земля;
  • рабочий ноль;
  • фаза.

Если здание устаревшее и не оснащено системой заземления, а проводка двухпроводная, все современные трехпроводные электротехнические приборы утрачивают свои качества. Например, сетевой фильтр становится обычной переноской. В этом случае установка зануления в квартире согласно нормативному документу ПУЭ 1.7.132 запрещена.

Трехфазная сеть

Что касается заземления и зануления электроустановок и бытовых приборов, работающих от сети 380 В, то все требования и правила монтажа точно такие же, как и в сетях однофазных. Только в систему устанавливается трехфазные УЗО или дифференциальные автоматы. Но в этом случае оба прибора сравнивают между собой силу тока, протекающего по трем фазам. Отклонение в одной из них от номинала – есть повод отключения электроустановки.

Если электродвигатель подключается по типу «треугольник», то нулевой провод от него отключается. Его можно присоединить к корпусу агрегата. И это уже дополнительная защита. По сути, это обычное зануление, которое спасет обслуживающий персонал в случае возникновения короткого замыкания или утечки тока от фазы на корпус.

Заключение по теме

Подводя итог всему вышесказанному, можно отметить, что заземление и зануление отличаются друг от друга принципом работы и применяемыми дополнительными защитными устройствами, которые приходится настраивать под определенные условия эксплуатации. То есть, в чем их разница, стало понятным. Как показывает практика, заземление в чистом виде – идеальный вариант в современных условиях. Конечно, приходится дополнительно выделять деньги на приобретение УЗО или дифференциальных автоматов, но это стоит того. Безопасность еще никто не отменял, тем более гарантированную безопасность.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий