Тепловой расчёт системы отопления: как грамотно сделать расчет нагрузки на систему

Введение

Требования по определению тепловых нагрузок потребителей при разработке схем теплоснабжения отражены в следующих нормативных и законодательных актах: — Федеральный Закон РФ от 27.07.2010 г. № 190-ФЗ ;

— приказ Министерства регионального развития РФ от 28.02.2009 г. № 610 ;

Договорные нагрузки, как правило, рассчитываются на основании проектных данных. Проектные нагрузки на отопление, в основном, зависят от расчётных параметров микроклимата помещений, расчётной температуры наружного воздуха в отопительный период (принимаемой равной температуре наиболее холодной пятидневки с обеспеченностью 0,92 по 8. СП 131.13330.2012 ) и теплоизоляционных характеристик ограждающих конструкций. Проектные нагрузки на ГВС зависят от объёмов потребления горячей воды и её расчётной температуры.

За последние 20-30 лет многие из перечисленных выше параметров и характеристик неоднократно менялись. Менялись методики расчёта тепловых нагрузок, требования по тепловой защите ограждающих конструкций. В частности, в класс энергетической эффективности многоквартирных домов (МКД) определяется, исходя из сравнения (определение величины отклонения) фактических или расчётных (для вновь построенных, реконструированных и прошедших капитальный ремонт МКД) значений показателя удельного годового расхода энергетических ресурсов, отражающего удельный расход энергетических ресурсов на отопление, вентиляцию, ГВС и базовых значений показателя удельного расхода энергетических ресурсов в МКД. При этом фактические (расчётные) значения должны быть приведены к расчётным условиям для сопоставимости с базовыми значениями. Фактические значения показателя удельного годового расхода энергетических ресурсов определяются на основании показаний общедомовых приборов учёта.

Менялся и сам климат, в результате чего, например, для Санкт-Петербурга нормативная расчётная температура наружного воздуха за тридцать, с небольшим, лет повышена с –26 °С до –24 °С, расчётная длительность отопительного периода уменьшилась на 6 дней, а средняя температура отопительного периода увеличилась на 0,5 °С (с –1,8 до –1,3 °С).

Кроме указанных выше факторов, сами потребители тепловой энергии вносят вклад в энергосберегающие мероприятия, например, путём замены в квартирах деревянных окон на более герметичные – пластиковые.

Все эти изменения, в совокупности, способствуют тому, что фактическое теплопотребление и договорные тепловые нагрузки потребителей тепловой энергии отличаются.

Примеры разработанных Схем теплоснабжения ряда крупных населённых пунктов (например, Нижнего Новгорода) показали, что, если в качестве фактической нагрузки принимается договорная нагрузка (нагрузка, установленная в договорах теплоснабжения), это создаёт избыточный запас мощности теплоснабжающих организаций. Значительная доля нагрузки в этом случае оказывается невостребованной, но при этом сохраняются постоянные эксплуатационные расходы, что негативно отражается и на эффективности теплоснабжающих организаций (ТСО) и на потребителе тепловой энергии.

В Стратегии отмечено, что применяемая в настоящее время технология планирования систем теплоснабжения приводит к излишним инвестициям, созданию избыточной тепловой мощности во всех элементах энергосистем и сохранению низкого уровня эффективности всей российской энергетики.

Актуальность поднимаемой в статье темы обусловлена отсутствием в действующих нормативных и законодательных актах методов определения фактических тепловых нагрузок в расчётных элементах территориального деления при расчётных температурах наружного воздуха, проблемами согласования фактических тепловых нагрузок, применяемых для инвестиционного планирования в Схемах теплоснабжения с ТСО, а также последствиями неверного анализа тепловых нагрузок потребителей, установленных в договорах теплоснабжения.

Особенности расчета системы отопления

Гидравлический расчет системы отопления является одним из наиболее трудоемких и сложных этапов в процессе проектирования систем отопления водяного типа. Перед проведением проектирования необходимо выполнить расчетно-графические работы: (См. также: Как рассчитать радиаторы отопления)

определить тепловой баланс помещений, которые отапливаются;

выбрать тип теплообменных поверхностей или отопительных приборов, затем разместить их на планах зданий помещения, которое отапливается;

принять решения по поводу конфигурации и установки системы водяного отопления: трассировки приборных веток и магистральных трубопроводов, размещения теплового источника.

 определить тип трубопроводов, которые используются, регулирующей и запорной арматуры (кранов, расхода, вентилей, клапанов и регуляторов давления, терморегуляторов);

(См. также: Как рассчитать количество батарей отопления)

составить аксонометрическую схему для данной системы отопления, в которой нужно указать номер, длину расчетных участков и тепловые нагрузки;

определить главное циркуляционное кольцо, которое состоит из последовательных участков трубопроводов, с учетом максимального расхода теплоносителя для двухтрубной системы (от источника теплоты к самому отдаленному отопительному прибору) или для однотрубной системы (от приборной ветки-стояка назад к источнику тепловой энергии).

Рисунок 5: Программа для проведения гидравлического расчета

Двухтрубная система отопления

Расчетный участок трубопровода – это участок фиксированного диаметра со стабильным расходом теплоносителя, который определяется тепловым балансом отапливаемого помещения. Расчет двухтрубной системы отопления включает в себя нумерацию расчетных участков, которую стоит начать с источника теплоты (теплового генератора или ИТП). Как правило, на подающей магистрали узловые точки в ответвленных местах выделяют заглавными буквами. Соответственные узлы указывают со штрихом на сборных магистральных трубопроводах.

Рисунок 6: Двухтрубная система отопления

Что касаемо узловых точек на стояках (в местах, где ответвляются распределительные приборные ветки), то их обозначают простыми арабскими цифрами, соответствующими номеру этажа (для горизонтальных систем) или отвечают номеру приборной ветки-стояка (для вертикальных систем). Данные номера выделяют штрихом в местах сбора потоков теплоносителя. Каждый расчетный участок нумеруется двумя буквами или цифрами, которые должны соответствовать началу участка и его концу.

Вертикальная система отопления

При вертикальных системах отопления нумерацию стояков (приборных веток) следует выполнять цифрами арабского алфавита в направлении по часовой стрелке, начиная от квартиры, которая на плане этажа расположена в верхней левой части по периметру здания. С помощью планов, вычерченных в масштабе, определяют длину участков трубопроводов с точностью до 0,1 м.

Рисунок 7: Двухтрубная вертикальная схема отопления

Расчет системы отопления частного дома не обходится без расчета тепловой нагрузки участка, поэтому необходимо определить тепловой поток, который на подающих трубах передает или уже передал теплоноситель. Тепловую нагрузку нужных участков системы трубопроводов (распределительных и сборных) рассчитывают с округлением до 10 Вт, и определяют только после распределения тепловой нагрузки среди всех приборов и приборных веток, которые отапливаются. Принято указывать тепловую нагрузку участка – Qi-j (Вт) над выносной линией, а его длину – li-j (м) под выносной линией.

Однотрубная система отопления

Расчет однотрубных систем немного отличается от расчета двухтрубных небольшим количеством особенностей при определении необходимой поверхности нагревательных приборов, а также при установлении размера и диаметра замыкающих участков и подводок данных нагревательных приборов. Порядок расчета данной системы отопления совпадает свыше приведенным примером расчета двухтрубной системы.

Расчет однотрубной системы отопления начинается с того, что следует рассчитать диаметры стояков и магистралей по давлению. Также можно произвести расчет по обратной схеме: изначально найти диаметры по кольцу прибора, потом определить диаметры замыкающих участков. При данном расчете коэффициент затекания определяется по графику, который составляется за результатами проведенных исследований.

Рисунок 8: Однотрубная система отопления

Важно! При расчетах нельзя использовать заранее принятое количество воды, которая затекает в нагревательные приборы, поскольку этот показатель не является фиксированным и постоянным, а меняется под влиянием различного рода факторов

Пример расчета тепловых нагрузок объекта коммерческого назначения

Этот номер находится на 2 этаже 4-этажного дома. Расположение — Москва.

Исходные данные по объекту

Адрес объектаг. Москва
Кол-во этажей в здании4 этажа
Этаж, на котором расположены зарегистрированные помещенияпервый
Площадь обследованного помещения112.9 кв.м
Высота этажа3,0 м
Отопительная системаОдиночная трубка
График температуры95-70 град. С УЧАСТИЕМ
График расчетных температур для пола, на котором находится комната75-70 град. С УЧАСТИЕМ
Тип наполненияНачальство
Расчет температуры воздуха в помещении+ 20 градусов Do
Радиаторы отопления, тип, количествоРадиаторы чугунные М-140-АО — 6 шт. Радиатор биметаллический Global (Глобал) — 1 шт.
Диаметр трубы отопленияDN-25 мм
Длина трубы подачи теплаL = 28,0 мт.
ГВСотсутствующий
Вентиляцияотсутствующий
Договорная тепловая нагрузка (час / год)0,02 / 47,67 Гкал

Расчетная теплоотдача установленных радиаторов отопления с учетом всех потерь составила 0,007457 Гкал / час.

Максимальный расход тепловой энергии на отопление помещений составил 0,001501 Гкал / час.

Максимальное конечное потребление составляет 0,008958 Гкал / час или 23 Гкал / год.

Соответственно, рассчитываем годовую экономию на отоплении этого помещения: 47,67-23 = 24,67 Гкал / год. Таким образом, вы можете сократить расходы на отопление почти вдвое. А если учесть, что в настоящее время средняя стоимость Гкал в Москве составляет 1,7 тысячи рублей, то годовая экономия в денежном выражении составит 42 тысячи рублей.

Отопительные устройства

Секционные радиаторы

В общем случае данные о тепловом потоке на одну секцию неизменно возможно обнаружить сайте производителя.

Если он малоизвестен, возможно ориентироваться на следующие приблизительные значения:

  • Чугунная секция — 160 Вт.
  • Биметаллическая секция — 180 Вт.
  • Алюминиевая секция — 200 Вт.

Как неизменно, имеется последовательность тонкостей. При боковом подключении радиатора с 10 и более секциями разброс температур между ближними к подводке и концевыми секциями будет очень большим.

Но: эффект сведется на нет, в случае если подводки подключить диагонально либо снизу вниз.

Помимо этого, в большинстве случаев производители отопительных устройств показывают мощность для в полной мере конкретной дельты температур между воздухом и радиатором, равной 70 градусам. Зависимость теплового потока от Dt линейна: в случае если батарея на 35 градусов горячее воздуха, тепловая мощность батареи будет ровно в два раза меньше заявленной.

Скажем, при температуре воздуха в помещении, равной +20С, и температуре теплоносителя в +55С мощность алюминиевой секции стандартного размера будет равна 200/(70/35)=100 ваттам. Чтобы обеспечить мощность в 2 КВт, пригодится 2000/100=20 секций.

Регистры

Особняком в перечне отопительных устройств стоят самодельные регистры.

Производители по понятным обстоятельствам не смогут указать их тепловую мощность, но ее несложно вычислить своими руками.

  • Для первой секции регистра (горизонтальной трубы известных размеров) мощность равна произведению ее длины и наружного диаметра в метрах, дельты температур между воздухом и теплоносителем в градусах и постоянного коэффициента 36,5356.
  • Для секций, находящихся в восходящем потоке теплого воздуха, употребляется дополнительный коэффициент 0,9.

Давайте разберем очередной пример — вычислим значение теплового потока для четырехрядного регистра с диаметром секции 159 мм, температурой 4 и длиной метра в 60 градусов в помещении с внутренней температурой +20С.

  1. Дельта температур в нашем случае равна 60-20=40С.
  2. Переводим диаметр трубы в метры. 159 мм = 0,159 м.
  3. Вычисляем тепловую мощность первой секции. Q = 0,159*4*40*36,5356 = 929,46 ватт.
  4. Для каждой последующей секции мощность будет равна 929,46*0,9=836,5 Вт.
  5. Суммарная мощность составит 929,46 + (836,5*3)=3500 (с округлением) ватт.

Диаметр трубопровода

Как определить минимальное значение внутреннего диаметра трубы розлива или подводки к отопительному прибору? Не станем лезть в дебри и воспользуемся таблицей, содержащей готовые результаты для разницы между подачей и обраткой в 20 градусов. Именно это значение характерно для автономных систем.

Максимальная скорость потока теплоносителя не должна превышать 1,5 м/с во избежание появления шумов; чаще ориентируются на скорость в 1 м/с.

При большой скорости потока вода шумит на фитингах и переходах диаметра. Едва ли этот шум порадует вас ночью.

Внутренний диаметр, ммТепловая мощность контура, Вт при скорости потока, м/с
0,60,81
8245032704090
10383051106390
12552073609200
1586201150014370
20153302044025550
25239503193539920
32392405232065400
406131581750102190
5095800127735168670

Скажем, для котла мощностью 20 КВт минимальный внутренний диаметр розлива при скорости потока в 0,8 м/с будет равен 20 мм.

Внутренний диаметр пластиковой трубы равен разнице наружного диаметра и удвоенной толщины стенки.

Температурные режимы помещений

Перед проведение любых расчётов параметров системы необходимо, как минимум, знать порядок ожидаемых результатов, а также иметь в наличии стандартизированные характеристики некоторых табличных величин, которые необходимо подставлять в формулы или ориентироваться на них. Выполнив вычисления параметров с такими константами, можно быть уверенным в достоверности искомого динамического или постоянного параметра системы.

Для помещений разнообразного назначения существуют эталонные стандарты температурных режимов жилых и нежилых помещений. Эти нормы закреплены в так называемых ГОСТах

Для системы отопления одним из таких глобальных параметров является температура помещения, которая должна быть постоянной в независимости от периода года и условий окружающей среды.

Согласно регламенту санитарных нормативов и правил есть различие в температуре относительно летнего и зимнего периода года. За температурный режим помещения в летний сезон отвечает система кондиционирования, а вот комнатная температура воздуха в зимний период обеспечивается системой отопления. То бишь нам интересны диапазоны температур и их допуски отклонений для зимнего сезона.

В большинстве нормативных документов оговариваются следующие диапазоны температур, которые позволяют человеку комфортно находиться в комнате. Для нежилых помещений офисного типа площадью до 100 м 2 :

  • оптимальная температура воздуха 22-24°С
  • допустимое колебание 1°С

Для помещений офисного типа площадью более 100 м 2 температура составляет 21-23°С. Для нежилых помещений промышленного типа диапазоны температур сильно отличаются в зависимости от предназначения помещения и установленных норм охраны труда.

Комфортная температура помещения у каждого человека «своя». Кто-то любит чтобы было очень тепло в комнате, кому-то комфортно когда в комнате прохладно — это всё достаточно индивидуально

Что же касаемо жилых помещений: квартир, частных домов, усадеб и т. д. существуют определённые диапазоны температуры, которые могут корректироваться в зависимости от пожеланий жильцов. И всё же для конкретных помещений квартиры и дома имеем:

  • жилая, в том числе детская, комната 20-22°С, допуск ±2°С
  • кухня, туалет 19-21°С, допуск ±2°С
  • ванная, душевая, бассейн 24-26°С, допуск ±1°С
  • коридоры, прихожие, лестничные клетки, кладовые 16-18°С, допуск +3°С

Важно отметить, что есть ещё несколько основных параметров, которые влияют на температуру в помещении и на которые нужно ориентироваться при расчёте системы отопления: влажность (40-60%), концентрация кислорода и углекислого газа в воздухе (250:1), скорость перемещения воздушных масс (0.13-0.25 м/с) и т. п

Неспециализированная тепловая мощность

По площади

СНиПы полувековой давности предлагают несложную схему расчета, которой многие пользуются сейчас: на 1 квадратный метр площади отапливаемого помещения берется 100 ватт тепла. На дом площадью 100 квадратов необходимо 10 КВт. Точка.

Легко, ясно и через чур неточно.

Обстоятельства?

  1. СНиПы разрабатывались для многоквартирных домов. Утечки тепла в квартире, окруженной отапливаемыми помещениями, и в частном доме с очень холодным воздухом за стенками несопоставимы.
  2. Расчет верен для квартир с высотой потолка 2,5 метра. Более большой потолок увеличит количество помещения, а, значит, и затраты тепла.

  1. Через двери и окна теряется куда больше тепловой энергии, чем через стенки.
  2. Наконец, будет логичным высказать предположение, что теплопотери в Сочи и Якутске будут очень сильно различаться. Повышение дельты температур между улицей и помещением вдвое увеличит затраты тепла на отопление ровно в два раза. Физика, но.

По объему

Для помещений с нормированным тепловым сопротивлением ограждающих конструкций (для Москвы — 3,19 м2*С/Вт) возможно применять расчет тепловой мощности по объему помещения.

На кубометр отапливаемого объема квартиры берется 40 ватт тепла. На кубометр объема частного дома без неспециализированных стен с соседними отапливаемыми строениями — 60.

  • На каждое окно к базовому значению добавляется 100 ватт тепловой энергии. На каждую ведущую на улицу дверь — 200.
  • Полученная мощность умножается на региональный коэффициент:
РегионКоэффициент
Краснодар, Крым0,7-0,9
Ленинградская и Столичная области1,2-1,3
Сибирь, Дальний Восток1,5-1,6
Чукотка, Якутия2,0

Давайте еще раз вычислим потребность в тепловой мощности отопления для дома площадью 100 квадратов, но сейчас конкретизируем задачу:

ПараметрЗначение
Высота потолков3,2 м
Количество окон8
Количество ведущих на улицу дверей2
РазмещениеГ. Тында (средняя температура января — -28С)

  1. Высота потолков в 3,2 метра даст нам внутренний количество дома в 3,2*100=320 м3.
  2. Базовая тепловая мощность составит 320*60=19200 ватт.
  3. Окна и двери внесут свою лепту: 19200+(100*8)+(200*2)=20400 ватт.
  4. Бодрящий мороз января вынудит нас применять климатический коэффициент 1,7. 20400*1,7=34640 ватт.

Как нетрудно подметить, отличие с расчетом по первой схеме не просто громадна — она разительна.

Что делать, в случае если уровень качества утепления дома значительно лучше либо хуже, чем предписывает СНиП ‘Тепловая защита зданий’?

По коэффициенту и объёму утепления

Инструкция для данной ситуации сводится к применения формулы вида Q=V*Dt*K/860, в которой:

  • Q — заветный показатель тепловой мощности в киловаттах.
  • V — Количество отапливаемого помещения.
  • Dt -дельта температур между улицей и помещением в пик холодов.
  • K — коэффициент, зависящий от степени утепления здания.

Две переменных требуют отдельных комментариев.

Дельта температур берется между предписанной СНиП температурой жилого помещения (+18 для регионов с нижней границей зимних холодов до -31С и +20 — для территорий с более сильными морозами) и средним минимумом наиболее холодного месяца. Ориентироваться на полный минимум не следует: рекордные холода редки и, простите за невольный каламбур, погоды не делают.

Коэффициент утепления возможно вывести аппроксимацией данных из следующей таблицы:

Коэффициент утепленияОграждающие конструкции
0,6 — 0,9Пенопластовая либо минераловатная шуба, утепленная кровля, энергосберегающие тройные стеклопакеты
1,-1,9Кладка в полтора кирпича, однокамерные стеклопакеты
2 — 2,9Кладка в кирпич, окна в древесных рамах без утепления
3-4Кладка в полкирпича, остекление в одну нитку

Давайте еще раз выполним расчет тепловых нагрузок на отопление для нашего дома в Тынде, уточнив, что он утеплен пенопластовой шубой толщиной 150 мм и защищен от непогоды окнами с тройными стеклопакетами.

Фактически, в противном случае современные дома в условиях Крайнего Севера не строятся.

  1. Температуру в дома примем равной +20 С.
  2. Средний минимум января услужливо посоветует общеизвестная интернет-энциклопедия. Он равен -33С.
  3. Так, Dt=53 градуса.
  4. Коэффициент утепления заберём равным 0,7: обрисованное нами утепление близко к верхней границе эффективности.

Q=320*53*0,7/860=13,8 КВт. Именно на это значение и стоит ориентироваться при выборе котла.

Отопление загородного дома электричеством

Для подобного расчета, при отоплении электричеством, помимо основных параметров введите цену тарифа за электроэнергию. Это облегчит расчет при постоянно меняющихся тарифах.

Калькулятор расхода газа

Калькулятор расхода газа поможет определить примерное количество газа, природного или пропан-бутана, необходимого для обогрева всей площади помещений, при изменении температур (температуры берутся в соответствии с нормами). При расчете отопления природным газом, цена уже внесена в таблицу, изменить не получится.

Достоинства:

  • автоматический процесс вычислений;
  • простота и удобство использования;
  • работает онлайн;
  • мгновенный результат;
  • выбор необходимых элементов для обогрева (трубы, радиаторы, котлы).

Недостатки:

  • неточность (дает приблизительный результат);
  • большое влияние на результат температурного режима (вычисления делаются на основе нормативных данных по температуре в определенных районах, которая отличается от реальной на несколько градусов).

После предварительного вычисления на калькуляторе, закажите выезд профессионалов для детального рассмотрения отапливаемого помещения, точного определения стоимости обогрева и необходимых комплектующих узлов для бесперебойной работы оборудования.

При вычислении показателя учитывайте коридоры и помещения, в которых не будут установлены приборы обогрева, но также нуждающиеся в отоплении (коридор; кладовая; прихожая).

Что такое гидравлический расчёт

Это третий этап в процессе создания тепловой сети. Он представляет собой систему вычислений, позволяющих определить:

  • диаметр и пропускную способность труб;
  • местные потери давления на участках;
  • требования гидравлической увязки;
  • общесистемные потери давления;
  • оптимальный расход воды.

Согласно полученным данным осуществляют подбор насосов.

Для сезонного жилья, при отсутствии в нём электричества, подойдёт система отопления с естественной циркуляцией теплоносителя (ссылка на обзор).

Основная цель гидравлического расчёта — обеспечить совпадение расчётных расходов по элементам цепи с фактическими (эксплуатационными) расходами. Количество теплоносителя, поступающего в радиаторы, должно создать тепловой баланс внутри дома с учётом наружных температур и тех, что заданы пользователем для каждого помещения согласно его функциональному назначению (подвал +5, спальня +18 и т.д.).

Комплексные задачи — минимизация расходов:

  1. капитальных – монтаж труб оптимального диаметра и качества;
  2. эксплуатационных:
    • зависимость энергозатрат от гидравлического сопротивления системы;
    • стабильность и надёжность;
    • бесшумность.

Замена централизованного режима теплоснабжения индивидуальным упрощает методику вычислений

Для автономного режима применимы 4 метода гидравлического расчёта системы отопления:

  1. по удельным потерям (стандартный расчёт диаметра труб);
  2. по длинам, приведённым к одному эквиваленту;
  3. по характеристикам проводимости и сопротивления;
  4. сопоставление динамических давлений.

Два первых метода используются при неизменном перепаде температуры в сети.

Два последних помогут распределить горячую воду по кольцам системы, если перепад температуры в сети перестанет соответствовать перепаду в стояках/ответвлениях.

Пример расчета мощности батарей отопления

Возьмем помещение площадью 15 квадратных метров и с потолками высотой 3 метра.Объем воздуха, который предстоит нагреть в отопительной системе составит:

V=15×3=45 метров кубических

Далее считаем мощность, которая потребуется для обогрева помещения заданного объема. В нашем случае — 45 кубических метров. Для этого необходимо умножить объем помещения на мощность, необходимую для обогрева одного кубического метра воздуха в заданном регионе. Для Азии, Кавказа это 45 вт, для средней полосы 50 вт, для севера около 60 вт. В качестве примера возьмем мощность 45 вт и тогда получим:

45×45=2025 вт — мощность, необходимая для обогрева помещения с кубатурой 45 метров

Нормы теплоотдачи для отопления помещения

Согласно практике для отопления помещения с высотой потолка не превышающей 3 метра, одной наружной стеной и одним окном, достаточно 1 кВт тепла на каждые 10 квадратных метров площади.

Для более точного расчета теплоотдачи радиаторов отопления необходимо сделать поправку на климатическую зону, в которой находится дом: для северных районов для комфортного отопления 10 м2 помещения необходимо 1,4-1,6 кВт мощности; для южных районов – 0,8-0,9 кВт. Для Московской области поправки не нужны. Однако как для Подмосковья, так и для других регионов рекомендуется оставлять запас мощности в 15% (умножив расчетные значения на 1,15).

Существуют и более профессиональные методы оценки, описанные далее, но для грубой оценки и удобства вполне достаточно и этого способа. Радиаторы могут оказаться чуть более мощными, чем минимальная норма, однако при этом качество отопительной системы лишь возрастет: будет возможна более точная настройка температуры и низкотемпературный режим отопления.

Полная формула точного расчета

Подробная формула позволяет учесть все возможные варианты потери тепла и особенности помещения.

Q = 1000 Вт/м2*S*k1*k2*k3…*k10,

  • где Q – показатель теплоотдачи;
  • S – общая площадь помещения;
  • k1-k10 – коэффициенты, учитывающие теплопотери и особенности установки радиаторов.

Показать значения коэффициентов k1-k10

k1 – к-во внешних стен в помещения (стен, граничащих с улицей):

  • одна – k1=1,0;
  • две – k1=1,2;
  • три – k1-1,3.

k2 – ориентация помещения (солнечная или теневая сторона):

  • север, северо-восток или восток – k2=1,1;
  • юг, юго-запад или запад – k2=1,0.

k3 – коэффициент теплоизоляции стен помещения:

  • простые, не утепленные стены – 1,17;
  • кладка в 2 кирпича или легкое утепление – 1,0;
  • высококачественная расчетная теплоизоляция – 0,85.

k4 – подробный учет климатических условий локации (уличная температура воздуха в самую холодную неделю зимы):

  • -35°С и менее – 1,4;
  • от -25°С до -34°С – 1,25;
  • от -20°С до -24°С – 1,2;
  • от -15°С до -19°С – 1,1;
  • от -10°С до -14°С – 0,9;
  • не холоднее, чем -10°С – 0,7.

k5 – коэффициент, учитывающий высоту потолка:

  • до 2,7 м – 1,0;
  • 2,8 — 3,0 м – 1,02;
  • 3,1 — 3,9 м – 1,08;
  • 4 м и более – 1,15.

k6 – коэффициент, учитывающий теплопотери потолка (что находится над потолком):

  • холодное, неотапливаемое помещение/чердак – 1,0;
  • утепленный чердак/мансарда – 0,9;
  • отапливаемое жилое помещение – 0,8.

k7 – учет теплопотерь окон (тип и к-во стеклопакетов):

  • обычные (в том числе и деревянные) двойные окна – 1,17;

  • окна с двойным стеклопакетом (2 воздушные камеры) – 1,0;
  • двойной стеклопакет с аргоновым заполнением или тройной стеклопакет (3 воздушные камеры) – 0,85.

k8 – учет суммарной площади остекления (суммарная площадь окон : площадь помещения):

  • менее 0,1 – k8 = 0,8;
  • 0,11-0,2 – k8 = 0,9;
  • 0,21-0,3 – k8 = 1,0;
  • 0,31-0,4 – k8 = 1,05;
  • 0,41-0,5 – k8 = 1,15.

k9 – учет способа подключения радиаторов:

  • диагональный, где подача сверху, обратка снизу – 1,0;
  • односторонний, где подача сверху, обратка снизу – 1,03;
  • двухсторонний нижний, где и подача, и обратка снизу – 1,1;
  • диагональный, где подача снизу, обратка сверху – 1,2;
  • односторонний, где подача снизу, обратка сверху – 1,28;
  • односторонний нижний, где и подача, и обратка снизу – 1,28.

k10 – учет расположения батареи и наличия экрана:

  • практически не прикрыт подоконником, не прикрыт экраном – 0,9;
  • прикрыт подоконником или выступом стены – 1,0;
  • прикрыт декоративным кожухом только снаружи – 1,05;
  • полностью закрыт экраном – 1,15.

После определения значений всех коэффициентов и подстановки их в формулу, можно посчитать максимально надежный уровень мощности радиаторов. Для большего удобства ниже находится калькулятор, где можно рассчитать те же самые значения быстро выбрав соответствующие исходные данные.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий