Повышающий преобразователь напряжения dc dc

Введение

В последние годы производители электронных компонентов все чаще используют контрактное производство полупроводниковых приборов. В таких компаниях работают высококлассные специалисты — разработчики и схемотехники, а производство готовых изделий размещается на лучших мировых фабриках, оснащенных самым современным оборудованием. Это связано с очевидными преимуществами, которые получает компания-разработчик:

  • резкое снижение накладных расходов, связанных с содержанием собственного высокотехнологичного производства;
  • возможность выбора лучших контрактных производителей для обеспечения высокого качества изделий;
  • сосредоточение усилий на разработке новых изделий и технологий;
  • гарантия длительного жизненного цикла приборов;
  • высокая динамика производства, как следствие — низкие сроки поставки продукции конечным потребителям;
  • относительно низкая численность сотрудников и одновременно высокий профессиональный уровень.

Все это дает возможность значительно снизить себестоимость изделий и, как следствие, цену для конечного потребителя, обеспечивая при этом высокое качество и передовые схемотехнические решения.

Ярким примером такой компании является Monolithic Power Systems (MPS). MPS была образована в 1997 году в Санта Клара (США). В настоящее время компания насчитывает около 100 человек, среди ее инвесторов — Bank of America, Investar, Aser Venture. Являясь держателем 18 патентов в области технологий BiCMOS и DMOS, компания специализируется на разработке и контрактном производстве силовых интегральных схем для источников питания постоянного тока, твердотельных источников света, драйверов люминесцентных ламп с холодным катодом и аудиоусилителей класса D. В перспективе MPS планирует разработку интегральных контроллеров сетевых источников питания. Передовые технологические решения позволяют интегрировать на одном кристалле цифровые схемы управления, прецизионные аналоговые компоненты и силовые транзисторы и достичь высокой плотности мощности при сверхмалых размерах интегральных схем.

В данной статье будет рассмотрена линейка интегральных схем для источников питания постоянного тока.

Эффективные решения для серийного производства электронной техники

При выборе элементной базы для серийно выпускаемых изделий, особенно при жестком ограничении себестоимости, на первое место выходят два фактора — цена компонента и, по возможности, отсутствие необходимости настройки и регулировки узла, в котором он используется. Оба эти фактора в той или иной степени влияют на себестоимость конечного продукта. Для мелких партий уникальных и оттого дорогих приборов их влияние незначительно, а вот для массовых изделий они могут быть определяющими.

Продукция компании MPS как нельзя лучше удовлетворяет указанным критериям. Более того, MPS позиционируется на мировом рынке как производитель и поставщик микросхем для крупных производителей OEM и ODM.

В своих разработках автор применяет микросхемы MPS более года, за это время они вошли в состав нескольких серийных изделий. Из опыта работы с контроллерами MPS хочется особо отметить следующие моменты:

  • Высокая стабильность и повторяемость характеристик микросхем: независимо от партии основные характеристики близки к типовым значениям, заявленным в документации.
  • Высокая устойчивость УСО и схемы обратной связи в целом: контроллеры нечувствительны к номиналам и к типу применяемых конденсаторов, внешние цепи компенсации не требуют подстройки.
  • Высокая эффективность: при правильном выборе параметров дросселя удается получить КПД значительно выше, чем типовые значения, приводимые в документации. Например, в преобразователе напряжения на базе MP1517 мощностью 22,5 Вт (15, 1,5) перегрев контроллера составляет менее 15 °С.
  • Готовое изделие не требует никакой регулировки, что позволяет использовать при серийном производстве простой тест на включение.

Глава 5 — Сборка макета и тестирование работы преобразователя

силовом модуле полумостаoutда, я в курсе что лампе надо 36В «переменки»
oМетодика для тестирования у меня проста и состоит из трех стадий:

  • Помещаю преобразователь в среду с температурой +10 oС и жду пока он охладится и станет практически неразличимым в тепловизоре на общем фоне;
  • Включаю преобразователь, даю ему поработать 5 минут и измеряю общий вид преобразователя и отдельно силовые компоненты;
  • Оставляю преобразователь работать еще на 1 час и снова измеряю, смотрю насколько сильно выросли температуры компонентов.
  • Измерение №1 — преобразователь поместили в окружающую среду с температурой около +10 oС:
    Тут видно, что платы практически полностью слились с окружающей средой, а значит можно включать и приступать к оценке температур преобразователя уже под номинальной нагрузкой.
  • Измерение №2 — преобразователь работает на 100% номинальной нагрузке в течение 5 минут, температура окружающей среды около +10 oС:
    После 5 минут работы картинка стала более контрастной и на ней отчетливо видно как сам преобразователь, так и основные нагревающиеся компоненты. Рекордсменами по перегреву стали изолированные dc/dc для драйверов транзисторов с температурой +29 oС, но тут ничего странного нет, т.к. температура перегрева +20…30 oС является для них номинальной о чем отражено в документации. Второе место занимается дроссель, температура которого составляет +28…29 oС, что более чем хорошо, т.к. часто рабочая дросселей вполне может достигать планки и в +80…100 oС. Температура радиатора составляет +20…21 oС, а транзисторы горячее всего на градус, а может и меньше, т.к. любой тепловизор на самом деле не самый точный на свете прибор.
  • Измерение №3 — преобразователь работает на 100% номинальной нагрузке в течение 1 часа, температура окружающей среды около +10 oС:
    Через час работы температуры подросли и устаканились, пробовал еще измерять через 3 часа, но результат не изменился, вернее изменения на уровне погрешности измерения, поэтому эту стадию не стал добавлять. Пока же давайте посмотрим на температуры после выхода преобразователя на крейсерскую скорость в номинальный режим.
    Температура радиатора подросла на +4 oС, а транзисторы «слились» с ним, т.к. все прогрелось и тепловой поток равномерно распределился. Температура на изолированных dc/dc подросла на +9 oС и они вышли на паспортные показатели перегрева, даже запас остался в пару градусов. Температура дросселя выросла на +3 oС.

ну да, с 5-ти кратным запасом:))

Окончательная сборка импульсного преобразователя напряжения.

Перед окончательной сборкой, все элементы схемы были соединены многожильным проводом, и была проверена способность схемы принимать и отдавать энергию.

Для предотвращения замыкания, импульсный преобразователь напряжения был со стороны контактов заизолирован силиконовым герметиком.

Затем все элементы конструкции были размещены в корпусе от «Кроны». Для того, чтобы передняя крышка с разъёмом не утапливалась внутрь, между передней и задней стенками была вставлена пластинка из целлулоида. После чего, задняя крышка была закреплена клеем «88Н».

Для зарядки модернизированной “Кроны” пришлось изготовить дополнительный кабель со штекером типа Джек 3,5мм на одном из концов. На другом конце кабеля, для снижения вероятности короткого замыкания, были установлены стандартные приборные гнёзда, вместо аналогичных штекеров.

Порядок намотки импульсного трансформатора.

Намотать прокладку на кольцевой сердечник столь малых размеров очень сложно, а мотать провод на голый сердечник неудобно и опасно. Изоляция провода может повредиться об острые грани кольца.
Чтобы предотвратить повреждение изоляции, притупите острые кромки магнитопровода, как описано .

Чтобы во время укладки провода, витки не «разбегались», полезно, покрыть сердечник тонким слоем клея «88Н» и просушить до намотки.

Вначале мотаются вторичные обмотки III и IV (см. схему преобразователя). Их нужно намотать сразу в два провода. Витки можно закрепить клеем, например, «БФ-2» или «БФ-4».

У меня не нашлось подходящего провода, и я вместо провода расчётного диаметра 0,16мм использовал провод диаметром 0,18мм, что привело к образованию второго слоя в несколько витков.

Затем, так же в два провода, мотаются первичные обмотки I и II. Витки первичных обмоток также можно закрепить клеем.

Преобразователь я собрал методом навесного монтажа, предварительно связав х/б нитью транзисторы, конденсаторы и трансформатор.

Вход, выход и общую шину преобразователя вывел гибким многожильным проводом.

Что такое преобразователь энергии

Преобразователь энергии представляет собой устройство, которое непрерывно преобразует один вид энергии в другой. Существует несколько таких устройств различной степени сложности, надежности и производительности. Кроме того, механизмы преобразования энергии могут происходить в различных формах, включая механические, химические и электрические процессы. Для приложений в силовых электронных системах предпочтительны преобразователи, способные выполнять динамическое преобразование энергии с использованием электрических процессов. Компоненты, обычно используемые для этой цели, включают в себя переключатели, а также пассивные компоненты, такие как катушки индуктивности, конденсаторы и трансформаторы. При этом избегают использования резисторов, чтобы уменьшить возможные потери мощности. То, как эти компоненты взаимосвязаны, зависит от желаемого метода передачи энергии.

Простейшей формой преобразования энергии было бы преобразование многофазного переменного напряжения одной величины, фазы и частоты в другую величину, фазу и частоту. В этом смысле вход или выход постоянного тока можно рассматривать как переменный ток с нулевыми фазами и частотой. Преобразователь постоянного тока представляет собой электронную схему, которая облегчает преобразование постоянного тока с одного уровня напряжения на другой в зависимости от требований. Этот преобразователь электроэнергии способен работать в широком диапазоне уровней мощности от очень малой мощности, например, в случае аккумуляторов, до очень большой мощности, например, в случае крупномасштабных систем передачи электроэнергии высокого напряжения.

Некоторые образцы готовых схем преобразователя постоянного тока показаны на следующем рисунке. Преобразователь постоянного тока может эффективно вырабатывать регулируемое напряжение от источника, который может или не может управляться на постоянную или переменную нагрузку, тем самым обеспечивая надлежащее регулирование системы в дополнение к желаемое изменение уровня напряжения.

Глава 2 — Ограничения проектирования boost преобразователя

Выходное напряжение не должно превышать входное более, чем в 3…4 раза.
Тут наверняка набегут специалисты и расскажут, как они в часах на ИН-12 с помощью MC34063 повышали напряжение boost-ом из +5В аж в целых +180В! Это конечно замечательно, но давайте прикинем коэффициент заполнения для данного случая, чтобы поднять напряжение из 5В в 180В надо заставить работать преобразователь при коэффициенте около 0,972(!). Думаю не надо рассказывать, что это плохая идея, что на большой частоте переходные процесс при коммутации транзисторов будут иметь сопоставимую длительность, а может даже и большую.
Так же при таком коэффициенте заполнения получается, что транзистор открыт почти всегда, а значит через него протекает ток и мы получаем максимально возможное значение статических потерь, а значит и низкий КПД.
К чему это собственно ведет… на малой мощности (тот самый случай с mc34063) гарантирована нестабильная работа, низкая надежность, пульсации тока и низкий КПД в совокупности с повышенным нагревом силовых элементов

На большой мощности — бабах.
Для примера обратите внимание на PFC, все они работают при соотношение максимум 1:4, а именно тот самый универсальный вход 85…265VAC или же стабилизатор напряжения с их 90…310VAC. Так же в качестве примера можно рассмотреть сетевые инверторы с MPPT, там при выходе 800В на вход подается 200…600VDC, то есть соотношение 1:4;

Напряжение на транзисторе

Данное ограничение тесно связано с тезисом о соотношение выше и вот почему… Транзистор VT1 должен иметь напряжение сток-исток равное минимум выходному напряжению, а в реальных устройствах иметь еще и запас хотя бы 20% на пульсации. Высоковольтные ключи имеют большое сопротивление канала, а при большом соотношении напряжений и ток на входе будет очень большим, что приведет к большим потерям на транзисторе;

Напряжение диода. Если внимательно посмотреть на схему преобразователя, то станет понятно, что к диоду VD1 прикладывается напряжение равное выходному, то есть если у вас выход 400В, то и диод должен выдерживать эти 400В.
В связи с этим у данной топологии есть интересный «плюс», т.к. диод высоковольтный и в нем протекает ток в разы ниже, чем ток через транзистор, то во многих решениях применение диода Шоттки или SiC-диода позволит получить меньшие потери, чем применение синхронной топологии (полумост на транзисторах). Это касается решений с выходом от 200В и более, а синхронный вариант топологии в основном актуален лишь до напряжения около 100В;

Напряжение конденсаторов. Вроде очевидный момент, но на всякий случай уточню — выходной конденсатор должен выдерживать напряжение равное выходному, что во многих задачах, где применяют boost может составлять и 400, и 800 и даже 1500VDC.

Проект.

В качестве корпуса для самодельного преобразователя напряжения я решил использовать корпус от отслужившей свой срок батареи «Крона». Такая конструкция, на мой взгляд, более универсальна, да и в мультиметр DT-830B, всё равно, ничего большего размера, чем «Крона», не помещается.

Прорисовка предполагаемой конструкции показала, что пальчиковый аккумулятор форм-фактора «ААА» можно разместить в корпусе от батареи с минимальным увеличением размера последнего.

А именно. Увеличить длину корпуса можно за счёт выпрямления одного из развальцованных краёв жестяной обечайки.

Заднюю стенку, при этом, пришлось немного наклонить, чтобы гайка крепления гнезда не увеличила габариты корпуса.

Возможно, вам также будет интересно

В автономных инверторах напряжения и тока с квазирезонансной коммутацией электро­магнитные процессы на временных интерва­лах переключения силовых вентилей протекают при колебательном или (в общем случае) монотон­ном изменении токов через вентили и напряжений на вентилях за счет основных и (или) дополни­тельных, монтажных и собственных (паразитных) реактивных элементов цепей коммутации, включа­ющих реактивности нагрузки и схемы инвертора, в том

Все статьи цикла Введение В технических устройствах встречается множество первичных источников электроэнергии, которые вырабатывают ее в виде постоянного напряжения. К ним относятся солнечные батареи, работающие на основе фотоэффекта, термоэлектрогенераторы и магнитогидродинамические (МГД) генераторы, топливные элементы, использующие энергию химических реакций, аккумуляторы как источники запасенной электроэнергии, электромашинные генераторы постоянного напряжения и т. д. Для приведения постоянных напряжений

Компания Altera объявила, что заявленное ранее двукратное увеличение производительности в Startix 10 FPGA и SoC, по сравнению с предыдущим поколением высокоэффективных СБИС ПЛ (Stratix V), успешно реализовано. В соответствии с программой раннего доступа к новым разработкам Altera осуществляет сотрудничество с несколькими клиентами, представляющими различные сферы электронной промышленности, выполняя тестирование производительности их проектов в СБИС ПЛ Stratix 10. Результаты тестов были оценены клиентами по достоинству. Огромный скачок в производительности Stratix 10 по сравнению с предыдущим …

Повышающие DC/DC-преобразователи напряжения

Контроллеры этой группы построены по схеме бустерных преобразователей напряжения с интегрированным силовым транзистором и внешним диодом Шоттки. Так же как и рассмотренные выше повышающие преобразователи напряжения, все конверторы имеют встроенную цепь компенсации усилителя сигнала ошибки, специально адаптированную для применения недорогих танталовых конденсаторов на выходе преобразователя. Номенклатура и краткие электрические характеристики микросхем этой группы приведены в таблице 3.

Контроллеры MP1517 и MP1527 — самые мощные в этой группе. Каждый из них имеет интегрированный ключевой транзистор с сопротивлением канала 150 мОм и обеспечивает ток нагрузки до 3 А (рекомендуемое значение — до 1,5 А). Схема включения и типовой КПД преобразователя напряжения на базе MP1517 показаны на рис. 17, структурная схема — на рис. 18. Контроллеры построены по схеме ШИМ с регулировкой по току и фиксированной частотой преобразования (1,1 МГц у MP1517 и 1,3 МГц у MP1527). Микросхемы имеют защиту от низкого входного напряжения, обрыва нагрузки и перегрева кристалла свыше 160 °С, а также функцию плавного запуска. Низкое напряжение ОС MP1517 (0,7 В) позволяет использовать его в качестве мощного драйвера светодиодов и светодиодных ламп без дополнительного усилителя тока. Микросхема MP1527 имеет дополнительный двунаправленный вывод FAULT («Авария»). Если в системе используется несколько преобразователей напряжения MP1527, то имеется возможность соединить все выводы FAULT для одновременного выключения всех контроллеров в случае возникновения аварийной ситуации хотя бы в одном из них. Контроллеры упакованы в миниатюрные корпуса для автоматизированного монтажа QFN16 (4×4 мм), MP1527 также выпускается в корпусе TSSOP14.

Рис. 18. Структурная схема преобразователя напряжения МР1517

Самый маломощный контроллер в рассматриваемой группе — MP1522 в корпусе для поверхностного монтажа SOT23-5 (рис. 19). В нем использована схемотехника преобразователя напряжения с постоянным пиковым током дросселя и переменной частотой коммутации. Он имеет интегрированный ключевой транзистор с сопротивлением канала 500 мОм и обеспечивает ток нагрузки до 0,3 А.

Рис. 19. МР1522 в корпусе для поверхностного монтажа SOT23-5

Для применений, требующих постоянной частоты коммутации, альтернативой MP1522 служит микросхема MP1541 (рисунок 20), также выпускающаяся в корпусе SOT23-5. Она позволяет реализовывать надежные, миниатюрные и недорогие преобразователи напряжения с током нагрузки до 550 мА.

Рис. 20. Микросхема МР1541

В линейке повышающих преобразователей MPS есть две специализированные микросхемы для питания TFT-панелей — MP1530 и MP1531 (рис. 21). Микросхемы идентичны по структуре и характеристикам и отличаются только частотами преобразования (1,4 МГц у MP1530 и 250 кГц у MP1531). Каждая из них содержит повышающий преобразователь напряжения и два линейных регулятора с положительным и отрицательным выходным напряжением, питающихся от схем с накачкой заряда. Ток нагрузки основного канала может достигать 500 мА, линейных регуляторов — до 10 мА.

Помимо своего основного назначения микросхемы могут применяться и для построения источников питания других устройств, содержащих, например, цифровые микросхемы (выход +5 В) и операционные усилители (выходы ±5…±15 В).

Завершает группу повышающих преобразователей напряжения новая микросхема MP1542, разработанная в начале 2005 года. Ее схема включения показана на рис. 22. Контроллер имеет интегрированный ключевой транзистор с сопротивлением канала 180 мОм и обеспечивает ток нагрузки до 2 А. Частота преобразования может выбираться из значений 0,7 МГц или 1,3 МГц с помощью вывода FSEL. Микросхема имеет защиту от низкого входного напряжения, КЗ нагрузки и перегрева кристалла свыше 160 °С, а также функцию плавного запуска, выпускается в миниатюрном корпусе MSOP8.

Рис. 22. Схема включения МР1542

Доработка мультиметра.

Мультиметр DT-830B сразу же заработал от модернизированной «Кроны». А вот тестер M890C+ пришлось немного доработать.

Дело в том, что в большинстве современных мультиметров задействована функция автоматического отключения питания. На картинке показана часть панели управления мультиметра, где обозначена данная функция.

Схема автоотключения (Auto Power Off) работает следующим образом. При подключении батареи, заряжется конденсатор С10. При включении питания, пока конденсатор C10 разряжается через резистор R36, на выходе компаратора IC1 удерживается высокий потенциал, что приводит к отпиранию транзисторов VT2 и VT3. Через открытый транзистор VT3 напряжение питания и попадает в схему мультиметра.

Как видите, для нормальной работы схемы, нужно подать питание на С10 ещё до того, как включится основная нагрузка, что невозможно, так как наша модернизированная «Крона», напротив, включится только тогда, когда появится нагрузка.

В общем, вся доработка заключалась в установке дополнительной перемычки. Для неё я выбрал место, где это было сделать удобнее всего.

К сожалению, обозначения элементов на электрической схеме не совпали с обозначениями на печатной плате моего мультиметра, поэтому точки для установки перемычки нашёл так. Прозвонкой выявил нужный вывод выключателя, а шину питания +9V определил по 8-ой ножке операционного усилителя IC1 (L358).

Глава 1 — Принцип работы преобразователя по топологии boost

  • Стадия накопления заряда. В момент включения преобразователя выходная емкость С2 находится под потенциалом Vin, т.к. ток проходит через дроссель L1 и диод VD1. Управляющее устройство (ШИМ-контроллер или DSP) начинает генерировать ШИМ-сигнал и подает его на затвор транзистора VT1. При открытии транзистора VT1 получается, что цепь замыкается, индуктивность L1 подключается с источнику питания и начинает накапливать энергию. Ток через VD1 не протекает, т.к. потенциал на катоде у него выше (около Vin), чем потенциал на аноде (потенциал GND, около 0В).
  • Стадия разряда индуктивности. Теперь ШИМ-сигнал меняет свое значение с 1 на 0 и транзистор VT1 закрывается. В этот момент дроссель L1 стремится поддержать значение тока, путем увеличения потенциала. На входе дросселя потенциал все тем же Vin, а следовательно потенциал вырастает в точке «дроссель-сток VT1-анод VD1». Когда потенциал в данной точке станет больше, чем потенциал на катоде VD1 ток начнет протекать через VD1 в нагрузку и параллельно заряжать выходную емкость С2. На этой стадии цепь так же замыкается, но уже не через VT1, а через путь «L1-VD1-C2-нагрузка»:

outon

  • Чтобы увеличить напряжение на выходе — необходимо увеличить коэффициент заполнения (duty);
  • Чтобы уменьшить напряжение на выходе — необходимо уменьшить коэффициент заполнения (duty).
  • Опыт №1. Входное напряжение (Vin) равно 12В, коэффициент заполнения ШИМ-сигнала составляет 0,75:
  • Опыт №2. Входное напряжение (Vin) равно 12В, коэффициент заполнения ШИМ-сигнала составляет 0,5:
  • Опыт №3. Входное напряжение (Vin) равно 12В, коэффициент заполнения ШИМ-сигнала составляет 0,25:

Настройка преобразователя.

Настройка может потребоваться для установки необходимого уровня выходного напряжения.

Я так подобрал количество витков, чтобы при напряжении на аккумуляторе 1,0 Вольт, на выходе преобразователя было около 7 Вольт. При этом напряжении, в мультиметре зажигается индикатор разряда батареи. Таким образом, можно предотвратить слишком глубокий разряд аккумулятора.

Если вместо предложенных транзисторов КТ209К будут использованы другие, тогда придётся подобрать количество витков вторичной обмотки трансформатора. Это связано с разной величиной падения напряжения на p-n переходах у различных типов транзисторов.

Я испытывал эту схему на транзисторах КТ502 при неизменных параметрах трансформатора. Выходное напряжение при этом снизилось на вольт или около того.

Также нужно иметь в виду, что база-эмиттерные переходы транзисторов одновременно являются выпрямителями выходного напряжения

Поэтому, при выборе транзисторов, нужно обратить внимание на этот параметр. То есть, максимально-допустимое напряжение база-эмиттер должно превышать необходимое выходное напряжение преобразователя

Если генерация не возникает, проверьте фазировку всех катушек. Точками на схеме преобразователя (см. выше) отмечено начало каждой обмотки.

Чтобы не возникало путаницы при фазировке катушек кольцевого магнитопровода, примите за начало всех обмоток, например, все выводы выходящие снизу, а за конец всех обмоток, все выводы выходящие сверху.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий