Количество воздуха для сжигания природного газа: формулы и примеры расчетов

Количество воздуха для сжигания природного газа: формулы и примеры расчетов

η»SO2_доля оксидов серы, улавливаемых в мокром золоуловителе попутно с улавливанием твердых частиц.

Ориентировочные значения η’SO2при сжигании различных видов топлива составляют:

березовские угли Канско-Ачинского бассейна

другие угли Канско-Ачинского бассейна

Доля оксидов серы (η»SO2), улавливаемых в сухих золоуловителях, принимается равной нулю. В мокрых золоуловителях эта доля зависит от общей щелочности орошающей воды и от приведенной сернистости топлива Sпр.

При характерных для эксплуатации удельных расходах воды на орошение золоуловителей 0,1 — 0,15 дм3/нм3η»SO2определяется по рисунку Приложения .

При наличии в топливе сероводорода к значению содержания серы на рабочую массу Sr в формуле () прибавляется величина

где H2S- содержание на рабочую массу сероводорода в топливе, %.

Примечание. — При разработке нормативов предельно допустимых и временно согласованных выбросов (ПДВ, ВСВ) рекомендуется применять балансово-расчетный метод, позволяющий более точно учесть выбросы диоксида серы. Это связано с тем, что сера распределена в топливе неравномерно. При определении максимальных выбросов в граммах в секунду используются максимальные значения Sr фактически использовавшегося топлива. При определении валовых выбросов в тоннах в год используются среднегодовые значения Sr.

Автоматизация процессов сжигания газа

Автоматическое регулирование процесса горения повышает надежность и безопасность эксплуатации газоиспользующих агрегатов и обеспечивает их работу в соответствии с наиболее оптимальным режимом.

В существующих газоиспользующих установках применяют системы частичной или комплексной автоматизации.

Современная комплексная газовая автоматика состоит из следующих основных систем:

  • автоматики регулирования,
  • автоматики безопасности,
  • аварийной сигнализации,
  • теплотехнического контроля.

Автоматика регулирования промышленного газового оборудования и агрегатов предназначена для управления и регулирования процесса горения газа таким образом, чтобы оборудование и агрегаты работали в заданном режиме и обеспечивали оптимальный режим горения газа.

Автоматика безопасности прекращает подачу газа к горелкам газоиспользующих установок при нарушениях режима работы. При этом контролируются наиболее важные параметры:

  • наличие пламени в топке. При отсутствии пламени в топке подача газа на горелку немедленно прекращается;
  • давление газа на подводящем газопроводе. При изменении давления газа против установленного минимального и максимального значений подача газа прекращается;
  • разрежение в топке. При понижении разрежения в топке до минимально допустимого подача газа прекращается;
  • давление воздуха (при наличии соответствующих горелок). При падении давления воздуха до минимально допустимого подача газа прекращается;
  • температура воды в котле. Если температура воды превышает допустимую норму, то подача газа прекращается;
  • давление пара в котле. При повышении давления пара сверх установленного подача газа прекращается.

Для выполнения перечисленных функций используются приборы блокировки, контроля и сигнализации. Под блокировкой понимается устройство, обеспечивающее невозможность пуска газа или включения агрегата при нарушении персоналом требований безопасности. Под сигнализацией понимается устройство, обеспечивающее подачу звукового или светового сигнала при достижении предупредительного значения контролируемого параметра.

При отключении агрегатов подаются звуковой и световой сигналы. Контролируют также загазованность помещений, где установлены газовые приборы и агрегаты. Приборы контроля и сигнализации дают возможность устанавливать дистанционное управление газоиспользующими установками.

Приборы теплотехнического контроля помогают обслуживающему персоналу вести технологический процесс в оптимальном режиме.

Степень автоматизации газоиспользующего агрегата зависит от конкретных условий его эксплуатации.

Научная электронная библиотека Монографии, изданные в издательстве Российской Академии Естествознания

По общепринятой методике объемы продуктов сгорания и воздуха выражаются в кубических метрах при нормальных условиях (0 °С и 760 мм рт. ст.) при сжигании 1 кг твердого или жидкого топлива или 1 м3 газового топлива.

Для выполнения теплового расчета топки и отдельных поверхностей нагрева котлоагрегата необходимо заранее подготовить таблицы объемов, энтальпий воздуха и продуктов сгорания по газоходам котла с учетом изменения избытка воздуха в них .

Теоретическое количество воздуха, необходимое для полного сгорания топлива при избытке воздуха ? = 1 для твердого и жидкого топлива, определяется по формуле :

для газообразного топлива

Здесь и в дальнейшем Ср, Sр и другие величины, характеризующие состав топлива, берутся из табл. П.4 и подставляются в формулы в процентах.

– для твердого топлива и мазута

– для природного газа

для природного газа

Теоретический объем водяных паров для твердого топлива и мазута определяется

где Gф – расход пара на паровое распыливание мазута в паромеханических форсунках и при подаче пара под колосниковую решетку при сжигании низкореакционного твердого топлива типа А, ПА и Т (Gф = 0,03…0,05 кг/кг).

для природного газа

, м3/м3; (2.14)

здесь dr – влагосодержание газообразного топлива, г/м3 (обычно dr ? 10).

В табл. П.4 приведены расчетные теоретические объемы воздуха и продуктов сгорания для топлив.

Действительные объемы продуктов сгорания при избытке воздуха в газоходах ?i > 1 определяют по формуле

(2.15)

Расчет объемов продуктов сгорания в поверхностях нагрева сводят в таблицу по типу табл. 2.3, составленной для прямоточного парового котла с промежуточным перегревом пара и регенеративным воздухоподогревателем.

При другой компоновке поверхностей нагрева для заданного в проекте (выбранного) типа котла и в зависимости от вида сжигаемого топлива последовательность расположения и вид поверхностей вдоль газового тракта, а также коэффициенты избытка воздуха могут быть другими.

Таблица 2.3 – Объемы продуктов сгорания, объемные доли трехатомных газов и концентрация золовых частиц

Величина и расчетная формула Газоход
Топочная камера, ширмы ПП высокого давления Промежуточный ПП Переходная зона Экономайзер Воздухподогреватель
Коэффициент избытка воздуха за поверхностью нагрева
Средний коэффициент избытка воздуха в поверхности нагрева ?ср
Объем водяных паров, м3/кг,
Полный объем газов, м3/кг,
Полный объем газов с учетом рециркуляции
Объемная доля трехатомных газов
Объемная доля водяных паров
Доля трехатомных газов и водяных паров
Безразмерная концентрация золовых частиц, кг/кг,

Объемы газов и водяных паров определяются по среднему коэффициенту избытка воздуха в поверхности нагрева, равному полусумме значений на входе в поверхность и выходе из нее. По среднему объему газов в поверхности определяется в дальнейшем средняя скорость газового потока, определяющая конвективный теплообмен.

В табл. 2.3 включены также объемные доли трехатомных газов и концентрация золовых частиц в продуктах сгорания, необходимые для последующего расчета лучистого теплообмена. Доля золы, уносимой потоком газа , выбирается по табл. 2.4.

Таблица 2.4 – Расчетные характеристики камерных топок при D > 75 т/ч

Твердое топливо (q3 = 0)
Вид топочного устройства Топливо Допустимое тепловое напряжение топочного объема qV, кВт/м3 Потеря теплоты q4, % Доля уноса золы из топки aун
Камерная топка с твердым удалением шлака
  • Антрациты
  • Полуантрациты
  • Тощие угли
  • Каменные угли
  • Отходы углеобогащения
  • Бурые угли
  • Фрезерный торф
  • Сланцы
  1. 140
  2. 160
  3. 160
  4. 175
  5. 160
  6. 185
  7. 160
  8. 115
  • 6
  • 4
  • 2
  • 1–1,5*
  • 2–3*
  • 0,5–1*
  • 0,5–1
  • 0,5–1
  1. 0,95
  2. 0,95
  3. 0,95
  4. 0,95
  5. 0,95
  6. 0,95
  7. 0,95
  8. 0,95
Камерная топка с жидким шлакоудалением
  • Антрациты и полуантрациты
  • Тощие угли
  • Каменные угли
  • Бурые угли
  1. 145
  2. 185
  3. 185
  4. 210
  • 3–4
  • 1,5
  • 0,5
  • 0,5
  1. 0,85
  2. 0,8
  3. 0,8
  4. 0,7–0,8
* Меньшие значения – для топлив с приведенной зольностью AП  1,02 в основном определяются потерей q3. Для котлов большой производительности (D > 420 т/ч) потери q3 + q4 следует принимать равными 0,1 %.

  • Безразмерная концентрация золовых частиц в потоке дымовых газов, кг золы/кг газов, определяется по формуле
  • (2.16)
  • Где масса дымовых газов, кг газов/кг сожженного топлива, при сжигании твердого топлива и мазута составляет
  • (2.17)

Потребление газа на ГВС

Когда вода для хозяйственных нужд подогревается с помощью газовых теплогенераторов – колонки или котла с бойлером косвенного нагрева, то для выяснения расхода горючего надо понять, сколько же требуется воды. Для этого можно поднять данные, прописанные в документации и определяющие норму на 1 человека.

Другой вариант – обратиться к практическому опыту, а он гласит следующее: для семьи из 4 человек при нормальных условиях достаточно нагреть 1 раз в сутки 80 л воды от 10 до 75 °С. Отсюда рассчитывается потребное на нагрев воды количество тепла по школьной формуле:

  • с – теплоемкость воды, составляет 4.187 кДж/кг °С;
  • m – массовый расход воды, кг;
  • Δt – разница между начальной и конечной температурой, в примере равна 65 °С.

Для вычисления предлагается не переводить объемное потребление воды в массовое, считать что эти величины одинаковы. Тогда количество теплоты будет:

4.187 х 80 х 65 = 21772,4 кДж или 6 кВт.

Остается подставить это значение в первую формулу, где будет учитываться КПД газовой колонки или теплогенератора (здесь — 96%):

V = 6 / (9.2 х 96 / 100) = 6 / 8.832 = 0.68 м³ природного газа 1 раз в сутки уйдет на подогрев воды. Для полной картины сюда же можно прибавить расход газовой плитой на приготовление пищи из расчета нормы 9 м³ горючего на 1 проживающего человека в месяц.

Повышение эффективности использования газового топлива

Эффективность использования газового топлива во многом зависит от его состава. Так, для высокотемпературных процессов целесообразно использовать газ с малым содержанием балласта и высокой жаропроизводительностью. В этом случае обеспечивается повышение производительности газовых установок и благодаря уменьшению продолжительности процесса сгорания газа и снижению потерь топлива в окружающую среду снижается удельный расход топлива на единицу выпускаемой продукции.

Во многих технологических процессах, связанных с процессами сушки воздухом, применяется промежуточный теплоноситель – водяной пар. Получение водяного пара требует дополнительных источников теплоты, а между тем для сушки с успехом можно применять продукты сгорания газа: тогда отпадает необходимость специальных котельных установок и калориферов для нагрева воздуха паром.

Известно, что при сжигании одного кубического метра газа выделяется два кубических метра водяного пара, уходящего с продуктами сгорания. Если теплоту конденсации этих водяных паров использовать для нагрева питательной воды, можно повысить КПД котельных установок.

Другой резерв повышения эффективности использования топлива – сжигание газа в горелочных устройствах при больших тепловых напряжениях, что позволяет получать большее количество энергии в малом объеме.

Многие технологические процессы протекают при высокой температуре уходящих газов. Эффективность использования газа в этом случае повышается, если использовать теплоту уходящих газов для производства пара, нагрева воды или воздуха. Каждая калория, вносимая в печь с подогретым воздухом, экономит более одной калории теплоты сжигаемого газа.

Наиболее прогрессивен метод ступенчатого использования теплоты продуктов сгорания, основанный на сочетании работы низкотемпературных, среднетемпературных и высокотемпературных установок.

Теплоту уходящих газов, отводимых от котлов и печей, можно использовать для отопления сушильных установок, а теплоту конденсации водяного пара, содержащегося в продуктах сгорания газа, отводимых из котлов или сушилок, – для нагрева воды в контактных экономайзерах. Таким образом, продукты сгорания, отводимые из высокотемпературных установок, используют в низкотемпературных процессах для отопления этих установок; КПД ступенчатых установок может быть доведен до 95 %.

Продукты сгорания газа можно с успехом использовать в качестве источника диоксида углерода и инертных газов. Большой интерес представляет применение диоксида углерода для ускорения развития растений и повышения урожая. Известно, что органическая масса растений образуется путем фотосинтеза из СО2 и Н2О.

В атмосфере воздуха содержится по объему около 0,03 % СО2 и 21 % О2. Повышение концентрации диоксида углерода в теплицах с доведением его содержания в воздухе теплиц до 0,3 % позволяет увеличить на 20 % урожай огурцов и других овощей, на 50 % – число цветов и ускорять их развитие, примерно на 100 % повысить зеленую массу табака, чая, герани и других культур.

Обогащение воздуха теплиц диоксидом углерода имеет важное значение, так как с ростом количества теплиц и применением гидропоники, при которой отсутствует выделение СО2 из почвы, потребность в диоксиде углерода значительно возрастает. Чистые продукты сгорания природного газа можно использовать для хранения в течение длительного срока фруктов и других пищевых продуктов

Чистые продукты сгорания природного газа можно использовать для хранения в течение длительного срока фруктов и других пищевых продуктов.

Продукты полного сгорания газа можно применять также в качестве инертных газов для изоляции огнеопасных материалов от контакта с воздухом, продувки взрывоопасной аппаратуры, газовых коммуникаций.

Методы сжигания газа

В зависимости от способа образования газовоздушной смеси методы сжигания газа подразделяются (рис. 1) на:

  • диффузионные;
  • смешанные;
  • кинетические.

При диффузионном методе сжигания к фронту горения газ поступает под давлением, а необходимый для горения воздух – из окружающего пространства за счет молекулярной или турбулентной диффузии. Смесеобразование здесь протекает одновременно с процессом горения, поэтому скорость процесса горения в основном определяется скоростью смесеобразования.

Рис. 1. Методы сжигания газа: а – диффузионный; б – смешанный; в – кинетический; 1 – внутренний конус; 2 – зона первичного горения; 3 – зона основного горения; 4 – продукты сгорания; 5 – первичный воздух; 6 – вторичный воздух

Процесс горения начинается после контакта между газом и воздухом и образования газовоздушной смеси необходимого состава. К струе газа (рис. 1, а) диффундирует воздух, а из струи газа в воздух – газ. Таким образом, вблизи струи газа создается газовоздушная смесь, в результате горения которой образуется зона первичного горения газа 2. Горение основной части газа происходит в зоне 3, а в зоне 4 движутся продукты сгорания.

Выделяемые продукты сгорания осложняют взаимную диффузию газа и воздуха, в результате чего горение протекает медленно, с образованием частиц сажи. Этим и объясняется, что диффузионное горение характеризуется значительной длиной и светимостью пламени.

Достоинством диффузионного метода сжигания газа является возможность регулирования процесса горения в широком диапазоне. Процесс смесеобразования легко управляем при применении различных регулировочных элементов. Площадь и длину факела можно регулировать дроблением струи газа на отдельные факелы, изменением диаметра сопла горелки, регулированием давления газа и т. д.

К преимуществам диффузионного метода сжигания относятся:

  • высокая устойчивость пламени при изменении тепловых нагрузок,
  • отсутствие проскока пламени,
  • равномерность температуры по длине пламени.

Недостатками этого метода являются:

  • вероятность термического распада углеводородов,
  • низкая интенсивность горения,
  • вероятность неполного сгорания газа.

При смешанном методе сжигания (рис. 1, б) горелка обеспечивает предварительное смешение газа только с частью воздуха, необходимого для полного сгорания газа, остальной воздух поступает из окружающей среды непосредственно к факелу. В этом случае сначала выгорает лишь часть газа, смешанная с первичным воздухом, а оставшаяся часть газа, разбавленная продуктами сгорания, выгорает после присоединения кислорода вторичного воздуха. В результате факел получается более коротким и менее светящимся, чем при диффузионном горении.

При кинетическом методе сжигания (рис. 1, в) к месту горения подается газовоздушная смесь, полностью подготовленная внутри горелки. Газовоздушная смесь сгорает в коротком факеле.

Достоинство этого метода сжигания – малая вероятность химического недожога, небольшая длина пламени, высокая теплопроизводительность горелок.

Недостаток – необходимость стабилизации газового пламени.

Оборудование

  • Оборудование в наличии
  • Резервуары для хранения СУГ
  • Газовые заправочные станции FAS
  • Автономное газоснабжение частных домов и котеджей
  • Автономное газоснабжение промышленных объектов
  • Испарители
  • Насосы и насосные агрегаты для СУГ
  • Компрессора для СУГ
  • Газозаправочные колонки
  • Универсальные газовые колонки
  • Наполняющее оборудование для бытовых баллонов
  • Массовые расходомеры FAS
  • Арматура для СУГ (краны, фильтры, клапаны, шланги и т.д.)
  • Промышленные компрессоры CORKEN
  • Промышленное насосное оборудование
  • Газоснабжение теплиц
  • Газонаполнительные станции (ГНС)
  • Газгольдеры
  • Фланцы
  • Запасные части FAS и Blackmer
  • Криогенное оборудование

Рациональное сжигание газа и защита воздушного бассейна

Защита воздушного бассейна от загрязнений – одна из важнейших проблем современности. Промышленность и транспорт приводят к загрязнению атмосферы газом, дымом, диоксидом углерода, парами хлора, пылью металлургических и других промышленных предприятий. Выхлопные газы автомобилей выделяют в атмосферу свинец и оксид углерода. Так, в одном литре этилированного бензина содержится 200–500 мг свинца.

Перевод в крупных городах автомобилей на сжиженный газ во многом способствует очищению воздушного бассейна.

Другой источник загрязнения воздушного бассейна – все возрастающие темпы потребления различного топлива. С ростом его потребления увеличивается количество выбрасываемых в атмосферу токсичных и канцерогенных веществ. Известно, что при сжигании топлива образуются вредные для здоровья человека вещества: сажа, зола, оксид углерода, оксиды азота и др.

Токсичным веществом является оксид азота NO, один из наиболее опасных загрязнителей воздушного бассейна. Оксид азота образуется в пламени, в зоне высоких температур, путем соединения азота с кислородом. При температурах 1500–1800 °С наблюдается наибольшая концентрация NO. Выбрасываемые в атмосферу горячие газы охлаждаются, и оксид азота превращается в диоксид азота NO2. Они, попадая в организм человека, поглощаются кровью и оказывают вредное действие на органы дыхания. В нашей стране установлены предельно допустимые нормы концентрации оксидов азота в атмосфере населенных пунктов (0,085 мг/м3). Продукты сгорания должны удаляться через дымовые трубы.

При сжигании твердого и жидкого топлива могут образоваться канцерогенные вещества, которые способствуют возникновению раковых заболеваний. Особенно опасна тонкая пыль, адсорбирующая химические вещества воздуха и переносящая их в легкие человека.

Сажа, образующаяся в процессе горения и несущая мельчайшие частицы угля, может быть носителем ароматических веществ, вызывающих различные тяжелые заболевания. В связи с этим перед человечеством стоит важнейшая проблема борьбы с загрязнением воздушного бассейна.

Одно из наиболее эффективных средств борьбы – замена твердого и жидкого топлива природным газом. С каждым годом тысячи промышленных и коммунальных предприятий переводят на газовое топливо.

С целью сокращения выбросов вредных веществ в окружающую среду и улучшения очистки отходящих газов от вредных примесей повсеместно совершенствуют технологические процессы и транспортные средства, увеличивают выпуск высокоэффективных газопылеулавливающих аппаратов, водоочистного оборудования, а также приборов и автоматических станций контроля состояния окружающей среды.

Охрана окружающей среды должна стать одной из важнейших задач любого предприятия. Отечественная и зарубежная практика охраны окружающей среды показывает, что основным направлением этой деятельности является не только контроль, но и предотвращение нанесения вреда и загрязнения природы в процессе производственной деятельности.

В должностную инструкцию ответственного за газовое хозяйство предприятия (или другого ответственного лица) должны включаться материалы по природоохранительной деятельности, в том числе:

  • мониторинг и регулирование выбросов продуктов сгорания газа;
  • соблюдение установленных нормативов воздействия на окружающую среду, лимитов использования газа, нормативов качества окружающей среды в зоне влияния предприятия;
  • повышение эффективности использования газового топлива;
  • предупреждение экологических аварий и аварийных ситуаций;
  • экологическая информация и профессиональное обучение персонала.

Эти и другие мероприятия должны отражаться в отчете предприятия об охране атмосферного воздуха (форма № 2-ти воздух).

Как уменьшить расход газа

Мероприятия, позволяющие снизить потребление горючего на отопление одного квадратного метра помещения, а значит, и на весь коттедж, общеизвестны. Это замена старых окон в квартирах, утепление наружных стен, полов и кровли (особенно касается железобетонных и кирпичных домов), а также применение различных способов автоматического регулирования температуры воздушной среды.

Но есть и другие способы экономии, влияющие на расход газа в котлах:

  • применение системы напольного отопления: теплоноситель греется максимум до 50 ºС вместо 90 ºС при радиаторной системе, что дает немалую экономию горючего;
  • устройство организованного притока воздуха с подогревом: львиная доля теплоты (около 60%), производимой котлом, идет на нагрев холодного воздуха, беспорядочно проникающего в здание извне;
  • запрограммированное автоматическое понижение температуры воздушной среды в определенное время суток: нет смысла прогревать весь объем помещения, когда в нем никого нет.

Влияние окружающей среды

Устройство газгольдера Расход газа может изменяться в зависимости от времени года. Объясняется это тем, что в разные сезоны газовая смесь отличается по процентному содержанию входящих в нее веществ. Как правило, СУГ получают при смешивании бутана и пропана. Свойства этих газов неодинаковы. Они имеют разную температуру кипения, благодаря чему летом в газе, который поступает в приборы, преобладает бутан, а зимой – пропан.

Если владелец дома собирается жить в нем круглогодично, на зимний период необходимо покупать газ с более высоким содержанием пропана. Делается это для того, чтобы газоснабжение домовых приборов было постоянным и надежным.

Постепенный расход газа в холодный период приводит к тому, что бутана в газгольдере остается больше. Объяснить этот факт просто: при низких температурах бутан практически не испаряется и остается в хранилище в жидком состоянии.

Приложение Д.Примеры расчета выбросов вредных веществ при сжигания попутного нефтяного газа

1. Попутный нефтяной газ Южно-Сургутского месторождения. Объемный расход газа Wv = 432000 м3 /сутки =5 м3/с. Сжигание бессажевое, плотность газа () rГ = 0.863 кг/м3. Массовый расход равен ():

В соответствие с и выбросы вредных веществ в г/с составляют:

бенз(а)пирен — 0.1·10-6 г/с .

для вычисления выбросов углеводородов в пересчете на метан определяется массовая их доля, исходя из и . Она равна 120 %. Недожог равен 6·104. Т.о. выброс метана составляет

0.01·6·10-4·120·15534 = 11.2 г/с

Сера в ПНГ отсутствует.

2. Попутный нефтяной газ Бугурусланского месторождения с условной молекулярной формулой C1.489H4.943S0.011О0.016. Объемный расход газа Wv = 432000 м/сутки = 5 м/с. Факельное устройство не обеспечивает бессажевого горения. Плотность газа () rГ = 1.062 кг/м3. Массовый расход равен ():

В соответствие и выбросы вредных веществ в г/с составляют:

бенз(а)пирен — 0.3·10-6 г/с .

Выбросы сернистого ангидрида определяются , в которой s = 0.011, mГ = 23.455, mSO2 = 64. Отсюда

MSO2 = 0.278·0.03·19116 = 159.5 г/с

В данном случае недожог равен 0.035. Массовое содержание сероводорода 1.6%. Отсюда

MH2S = 0.278·0.035·0.01·1.6·19116 = 2.975 г/с

Выбросы углеводородов определяются аналогично примеру 1.

Что влияет на расход газа?

Топливный расход определяется, во-первых, мощностью — чем мощнее котел, тем интенсивнее расходуется газ. При этом влиять извне на эту зависимость трудно.

Даже если вы приглушите 20-киловаттный аппарат до минимума, он все равно будет потреблять топлива больше, чем его менее мощный 10-киловаттный собрат, включенный на максимум.

Из этой таблицы видно, какова зависимость между отапливаемой площадью и мощностью газового котла. Чем мощнее котел, тем он дороже. Но чем больше площадь отапливаемых помещений, тем быстрее котел самоокупается

Во-вторых, берем во внимание тип котла и принцип его функционирования:

  • открытая или закрытая камера сгорания;
  • конвекционный или конденсационный;
  • обычный дымоход или коаксиальный;
  • один контур или два контура;
  • наличие автоматических датчиков.

В закрытой камере топливо сжигается более экономно, чем в открытой камере. КПД конденсационного агрегата благодаря встроенному дополнительному теплообменнику для конденсации паров, присутствующих в продукте сгорания, повышается до 98-100% в сравнении с 90-92% КПД конвекционного агрегата.

С коаксиальным дымоходом также повышается значение КПД — холодный воздух с улицы подогревается разогретой выхлопной трубой. Из-за второго контура идет, конечно, увеличение расхода газа, но и газовый котел в этом случае обслуживает не одну, а две системы — отопление и горячее водоснабжение.

Автоматические датчики – полезная вещь, они ловят внешнюю температуру и настраивают работу котла на оптимальный режим.

В-третьих, смотрим на техническое состояние оборудования и качество самого газа. Накипь и окалина на стенках теплообменника существенно понижают теплоотдачу, компенсировать ее недостаток приходится увеличением мощности.

Увы, и газ может быть с водяной и прочей примесью, но вместо того, чтобы выставлять претензии поставщикам, мы переключаем регулятор мощности на несколько делений в сторону максимальной отметки.

Одна из современных высокоэкономичных моделей — напольный газовый конденсационный котёл марки Baxi Power мощностью 160 кВт. Такой котел обогревает 1600 кв. м площади, т.е. большой дом в несколько этажей. При этом по паспортным данным он расходует природного газа 16,35 куб. м в час и имеет КПД 108%

И, в-четвертых, площадь отапливаемых помещений, естественная убыль тепла, продолжительность отопительного сезона, погодные особенности. Чем просторнее площадь, чем выше потолки, чем больше этажей, тем больше топлива потребуется, чтобы отопить такое помещение.

Расчет получаемых объемов тепловой энергии

Количество тепла (Гкал), которое получают от котельной в течение года, можно определить как сумму показателей – энергия, получаемая для разных нужд:

Qобщ.год = Qгод1 + Qгод2 + Qгод3

Это энергия, которую нужно выработать за 12 отчетных месяцев для обогревающих систем объектов (Qгод1), для вентиляционных систем (Qгод2) и для ГВС (Qгод3).

Расчет теплоснабжения котельной для ГВС производят с учетом таких параметров:

  • тепловой нагрузки на ГВС за один час;
  • суточной работы системы в часах;
  • времени отопительного сезона;
  • собственных температур неподогреваемой воды зимой/летом.

Среднемесячный объем тепла (Гкал), который отпускается на отопление и вентиляционную систему, высчитывают на основе обычной тепловой нагруженности на такие системы (Qо,вmax). Берут поправку на внутреннюю температуру, которая определяется по назначению объекта, и среднюю температуру месяца на улице (по СНиПу 2.04.07-86). В формулу также подставляют показатели, сколько часов в сутки (Тсут) и сколько дней в месяц (nмес) работает котельная.

Qср/мес = Qо,вmax* (tвн — tнар ср/мес) / tвн — tнар) * Тсут * nмес

Чтобы определить, какова тепловая мощность котельной, расчет делают в таком порядке:

  • определение по плану выработки энергии;
  • вычисление, сколько тепла пойдет на обеспечение технических и иных нужд самой котельной.

При этом принимают во внимание остановку котельной в летние месяцы (разнообразные профилактические работы, текущий либо капитальный ремонт и подготовка к новому отопительному сезону). Такие мероприятия реализуются по заранее подготовленным специальным графикам, которые определяются для различных климатических территорий

Стоимость проекта отопления вы можете рассчитать при помощи калькулятора, представленного ниже:

Стоимость проекта отопления вы можете рассчитать при помощи калькулятора, представленного ниже:

Методика расчета для природного газа

Электронная педаль газа: что это такое и как работает

Примерный расход газа на отопление считается исходя из половинной мощности установленного котла. Все дело в том, что при определении мощности газового котла закладывается самая низкая температура. Это и понятно — даже когда на улице очень холодно, в доме должно быть тепло.

Посчитать расход газа на отопление можно самостоятельно

Но считать расход газа на отопление по этой максимальной цифре совсем неверно — ведь в основном температура значительно выше, а значит, топлива сжигается намного меньше. Потому и принято считать средний расход топлива на отопление — порядка 50% от теплопотерь или мощности котла.

Считаем расход газа по теплопотерям

Если котла еще нет, и вы оцениваете стоимость отопления разными способами, считать можно от общих теплопотерь здания. Они, скорее всего, вам известны. Методика тут такая: берут 50% от общих теплопотерь, добавляют 10% на обеспечение ГВС и 10% на отток тепла при вентиляции. В результате получим средний расход в киловаттах в час.

Далее можно узнать расход топлива в сутки (умножить на 24 часа), в месяц (на 30 дней), при желании — за весь отопительный сезон (умножить на количество месяцев, на протяжении которых работает отопление). Все эти цифры можно перевести в кубометры (зная удельную теплоту сгорания газа), а потом перемножить кубометры на цену газа и, таким образом, узнать затраты на отопление.

Наименование толпиваЕдиница измеренияУдельная теплота сгорания в кКалУдельная теплота сгорания в кВтУдельная теплота сгорания в МДж
Природный газ1 м 38000 кКал9,2 кВт33,5 МДж
Сжиженный газ1 кг10800 кКал12,5 кВт45,2 МДж
Уголь каменный (W=10%)1 кг6450 кКал7,5 кВт27 МДж
Пеллета древесная1 кг4100 кКал4,7 кВт17,17 МДж
Высушенная древесина (W=20%)1 кг3400 кКал3,9 кВт14,24 МДж

Пример расчета по теплопотерям

Пусть теплопотери дома составляют 16 кВт/час. Начинаем считать:

  • средняя потребность в тепле в час — 8 кВт/ч + 1,6 кВт/ч + 1,6 кВт/ч = 11,2 кВт/ч;
  • в день — 11,2 кВт * 24 часа = 268,8 кВт;
  • в месяц — 268,8 кВт * 30 дней = 8064 кВт.

Переводим в кубометры. Если использовать будем природный газ, делим расход газа на отопление в час: 11,2 кВт/ч / 9,3 кВт = 1,2 м3/ч. В расчетах цифра 9,3 кВт — это удельная теплоемкость сгорания природного газа (есть в таблице).

Так как котел имеет не 100% КПД, а 88-92%, придется внести еще поправки на это — добавить порядка 10% от полученной цифры. Итого получаем расход газа на отопление в час — 1,32 кубометра в час. Далее можно рассчитать:

  • расход в день: 1,32 м3 * 24 часа = 28,8 м3/день
  • потребность в месяц:28,8 м3/день * 30 дней = 864 м3/мес.

Средний расход за отопительный сезон зависит от его длительности — умножаем на количество месяцев, пока длится отопительный сезон.

Этот расчет — приблизительный. В какой-то месяц потребление газа будет намного меньше, в самый холодный — больше, но в среднем цифра будет примерно такой же.

Расчет по мощности котла

Расчеты будут немного проще, если имеется рассчитанная мощность котла — тут уже учтены все необходимые запасы (на ГВС и вентиляцию). Потому просто берем 50% от расчетной мощности и далее считаем расход в день, месяц, за сезон.

Например, проектная мощность котла — 24 кВт. Для расчета расхода газа на отопление берем половину: 12 к/Вт. Это и будет средняя потребность в тепле в час. Чтобы определить расход топлива в час, делим на теплотворную способность, получаем 12 кВт/час / 9,3 к/Вт = 1,3 м3. Далее все считается как в примере выше:

  • в день: 12 кВт/ч * 24 часа = 288 кВт в перерасчете на количество газа — 1,3 м3 * 24 = 31,2 м3
  • в месяц: 288 кВт * 30 дней = 8640 м3, расход в кубометрах 31,2 м3 * 30 = 936 м3.

Далее добавим 10% на неидеальность котла, получим, что для этого случая расход будет чуть больше 1000 кубометров в месяц (1029,3 куб). Как видите, в этом случае все еще проще — меньше цифр, но принцип тот же.

По квадратуре

Еще более приблизительные расчеты можно получить по квадратуре дома. Есть два способа:

  • Можно посчитать по СНиПовским нормам — на обогрев одного квадратного метра в Средней Полосе России в среднем требуется 80 Вт/м2 . Эту цифру можно применять, если ваш дом построен по всем требованиям и имеет хорошее утепление.
  • Можно прикинуть по среднестатистическим данным: при хорошем утеплении дома требуется 2,5-3 куб/м2;
  • при среднем утеплении расход газа 4-5 куб/м2.

Каждый хозяин может оценить степень утепления своего дома, соответственно, можно прикинуть, какой расход газа будет в данном случае. Например, для дома в 100 кв. м. при среднем утеплении потребуется 400-500 кубометров газа на отопление, на дом в 150 квадратов уйдет 600-750 кубов в месяц, на отопление дома площадью 200 м2 — 800-100 кубов голубого топлива. Все это — очень приблизительно, но цифры выведены на основании многих фактических данных.

Выводы и полезное видео по теме

Приложенный ниже видеоматериал позволит выявлять недостаток воздуха при горении газа без каких-либо расчетов, то есть визуально.

Рассчитать количество воздуха, необходимого для эффективного горения любого объема газа можно за считанные минуты. И владельцам недвижимости, оборудованной газовым оборудованием, следует об этом помнить. Так как в критический момент, когда котел или любой другой прибор будет работать неправильно, умение вычислять количество воздуха, нужное для эффективного горения, поможет выявить и устранить неполадку. Что, кроме того, повысит безопасность.

Хотите дополнить изложенный выше материал полезными сведениями и рекомендациями? Или у вас остались вопросы по расчету? Задавайте их в блоке комментариев, пишите свои замечания, принимайте участие в обсуждении.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий