Блок питания: что можно сделать из энергосберегающей лампы?

Каких параметров мощности БП можно добиться от энергосберегающей лампы?

«Вторую» жизнь «экономки» часто используют современные радиолюбители.
Ведь для их хэнд-мэйдов часто требуется силовой трансформатор, с наличием которого возникают определенные трудности, начиная его покупкой и заканчивая расходом большого количества провода для обмотки и габаритными размерами конечного изделия. Поэтому народные умельцы приловчились заменять трансформатор на импульсный блок питания. Тем более, если для этих целей использовать электронный балласт неисправного осветительного прибора, это существенно сэкономит средства, особенно для трансформатора мощностью более 100 Вт.

Маломощный импульсный блок питания можно соорудить путем вторичной обмотки каркаса уже имеющейся катушки индуктивности. Чтобы получить блок питания более высокой мощности, потребуется дополнительный трансформатор. Импульсный блок питания на 100 Вт м более можно изготовить на базе ЭБ ламп мощностью 20-30 Вт, схему которых придется немного изменить, дополнив ее выпрямляющим диодным мостом VD1-VD4 и изменив в сторону увеличения сечение обмотки дросселя L0.

Самодельный трансформаторный БП

Если не удастся повысить коэффициент усиления транзисторов, придется увеличить ток их базы, изменив номиналы резисторов R5-R6 на меньшие. Кроме этого, придется увеличить параметры мощности резисторов базовой и эмиттерной цепи.
При малой частоте генерации, придется заменить конденсаторы C4, C6 на элементы с большей емкостью.

Ремонт при перегоревшей нити

Ремонтные работы с нитью влекут за собой работу балласта во внештатном режиме. Это означает, что при возникновении серьезной перегрузки пускорегулирующий аппарат выйдет из строя. При отсутствии перегрузок лампа обычно продолжает бесперебойное функционирование в течение 9–18 месяцев. Продолжительность срока службы зависит от использованных в схеме деталей, а также их качества.

В случае перегорания только одной нити шунтируем ее сопротивлением. Как это сделать, показано на рисунке.

Для создания шунтирующего сопротивления (RШ) рекомендуется ставить резистор, сопротивление которого равно второй (неповрежденной) нити накала. Однако такой подход не является полностью достоверным, так как мы измеряли сопротивление «холодной» нити. Если установить равнозначный резистор, то есть риск, что он вскоре сгорит. Поэтому лучше установить резистор с номинальным сопротивлением 22 Ом и мощностью от 1 Вт.

Теоретическое обоснование

Светодиоды работают при низком напряжении – порядка 2-3В. Но самое главное, для нормальной работы требуется не стабильность напряжения, а стабильность тока
, по ним протекающего. При понижении тока снижается яркость свечения, а превышение приводит к выходу из строя диодного элемента. Полупроводниковые устройства, к которым относятся светодиоды, имеют ярко выраженную зависимость от температуры. При нагреве сопротивление перехода падает и возрастает прямой ток.

Простой пример: источник стабильного напряжения выдает 3В, при токе потребления светодиода 20мА. При повышении температуры напряжение на светодиоде остается неизменным, а ток возрастает вплоть до недопустимых значений.

Для исключения описанной ситуации, источники света на полупроводниках запитывают от стабилизатора тока, он же драйвер. По аналогии с люминесцентными лампами драйвер иногда называют балластом для светодиодов.

Наличие входного напряжение 220В вместе с требованием стабилизации тока приводит необходимости создания сложной схемы питания светодиодных ламп.

Самодельный блок питания

Блок питания

Маломощный импульсный блок питания с параметрами мощности 3,7-20 Вт не требует использования импульсного трансформатора. Для этого будет достаточно увеличить количество витков магнитопровода на уже имеющемся дросселе. Новую обмотку можно намотать поверх старой. Для этого рекомендуют использовать провод МГТФ с фторопластовой изоляцией, которая заполнит просвет магнитопровода, что не потребует большого количества материала и обеспечит необходимую мощность устройства.

Чтобы повысить мощность ИБП, придется использовать трансформатор, который также можно соорудить на основе уже имеющегося дросселя ЭБ. Только для этого рекомендуют использовать лакированный обмоточный медный провод, предварительно намотав на родную дроссельную обмотку защитную пленку во избежание пробоя. Оптимальное количество витков вторичной обмотки обычно подбирают опытным путем.

Источник балласта энергосберегающей лампочки

Согласно характеристикам энергосберегающих ламп, в цоколе каждой из них предусмотрен так называемый электронный балласт – миниатюрная схема, предотвращающая мигание лампы во время включения и обеспечивающая постепенный разогрев катодных спиралей. Благодаря ей находящийся в колбе газ испускает свечение с частотой от 30 до 100 кГц.


КЛЛ в разобранном виде


Вид люминесцентной лампочки изнутри


Устройство энергосберегающей лампы на примере изделия от Camelon

Работа на столь высоких частотах значительно увеличивает коэффициент энергопотребления, доводя его практически до единицы, чем и обусловлена высокая экономичность ламп дневного света данного типа. Дополнительными преимуществами высокочастотного электричества является отсутствие воспринимаемого человеческим ухом шума и электромагнитного поля.

В зависимости от того, как спроектирован электронный дроссель для люминесцентных ламп, она может сразу загораться с полным накалом, либо выходить на максимальную яркость постепенно. Иногда для этого требуется одна или две минуты, что, конечно, не очень удобно. Время разогрева лампы производителями не указывается, и покупатель имеет возможность проверить его, только начав пользоваться изделием.

Подавляющая часть балластных схем, по сути, являющихся преобразователями напряжения, собирается на полупроводниковых транзисторах. В дорогих лампах применена более сложная схема, в дешевых – упрощенная.

Вот чем можно поживиться, имея на руках годную или перегоревшую люминесцентную лампу:

  • биполярные транзисторы, рассчитанные на напряжение до 700 В и токи до 4 А, часто уже с защитными диодами (D4126L или аналогичные);
  • полевые транзисторы (встречаются довольно редко);
  • импульсный трансформатор;
  • дроссель;
  • двунаправленный динистор, аналогичный сдвоенному динистору КН102;
  • конденсатор на 10/50В.

Некоторые виды электронного балласта энергосберегающих ламп при сборке самодельного блока питания выступают не просто источником комплектующих, но представляют собой значительную часть схемы, которую остается только немного дополнить и изменить.

Не очень удачными считаются преобразователи, имеющие в своем составе электролитические конденсаторы. Именно эти элементы особенно часто становятся причиной поломок в электронных устройствах.

Рассчитываем ёмкость необходимого напряжения

Для экономии используют конденсаторы с маленьким показателем ёмкости. Именно от них будет зависеть показатель пульсации входящего напряжения. Для снижения пульсации, необходимо увеличивать объём конденсаторов тоже делается для увеличения показателя пульсации только в обратном порядке.

Для снижения размеров и улучшения компактности, возможно, применять конденсаторы на электролитах. К примеру, можно использовать такие конденсаторы, которые вмонтированы в фототехнику. Они обладают ёмкостью 100µF х 350V.

Блок питания на двадцать ватт

Чтобы обеспечить бп показателем двадцать ватт, достаточно использовать стандартную схему от энергосберегающих светильников и вовсе не наматывая дополнительной намотки на трансформаторы. В случае, когда дроссель обладает свободным пространством и может дополнительно уместить витки, можно их добавить.

Таким образом, следует добавить два-три десятка витков обмотки, чтобы была возможность подзаряжать мелкие устройства или использовать ибп как усилитель для техники.

Схема блока питания на 20 ватт

Если вам требуется более эффективное увеличение показателя мощности, можно использовать самый простой провод из меди, покрытый лаком. Он специально предназначен для обмотки. Убедитесь что изоляция на стандартной обмотке дросселя достаточно качественная, так как эта часть будет находиться под значением входящего тока. Также следует оградить её от вторичных витков с помощью бумажной изоляцией.

Действующая модель БП мощность – 20 Ватт.

Для изоляции используем специальный картон толщиной 0.05 миллиметра или 0.1 миллиметра. В первом случае необходимо два слова, во втором достаточно одного. Сечение обмоточного провода используем из максимального больших, количество витков будет подбирать методом проб. Обычно витков необходимо достаточно мало.

Уменьшение поперечного диаметра используемого провода конечно увеличит численность витков, но на мощность это повлияет только в минус.

Стоваттный блок питания

Чтобы иметь возможность поднять мощность бп до сотни ватт, необходимо дополнительно докрутить импульсный трансформатор и расширить ёмкость фильтровочного конденсатора до 100 фарад.

Схема 100 ватт БП

Чтобы облегчить нагрузку и уменьшить температуру транзисторов, к ним следует добавить радиаторы для охлаждения. При такой конструкции, КПД получится в районе девяноста процентов.

Следует подключить транзистор 13003

К электронному балласту бп следует подключить транзистор 13003, который способен закрепляться с помощью фасонной пружины. Они выгодны тем, что с ними нет необходимости устанавливать прокладку из-за отсутствия металлических площадок. Конечно, их теплоотдача значительно хуже.

Лучше всего проводить закрепления с помощью винтов М2.5, с заранее установленной изоляцией. Также возможно использовать термопасту, которая не передаёт напряжение сети.

Подключение к сети 220 вольт

Подключение происходит с помощью лампы накаливания. Она будет служить защитным механизмом и подключается перед блоком питания.

В этом случае, лампа служит балластом, который имеет нелинейный показатель и отлично предохраняет ибп от неисправной работы сети. Значение мощности лампы необходимо подбирать таким же образом, как и мощность самого импульсного блока питания.

Так как, возможно, что блок питания будет пропускать сильное напряжение, позаботьтесь о том, чтобы все его соединения и контакты были качественно заизолированы. Тоже касается и всех транзисторов, их так же следует изолировать от внешней среды, ведь они могут пропускать ток через свой корпус.

Очень часто причиной поломки электроприбора становится неисправность аккумулятора. Вследствие этого нужен ремонт или же покупка нового оборудования. Но можно избежать больших затрат, сделав блок питания из энергосберегающей лампы своими руками. Все необходимые детали можно взять из обычной люминесцентной лампы, стоимость которой невелика.

В чем суть реконструкции балласта

Чтобы получить возможность подключения нагрузки к отдельной обмотке, надо либо намотать ее на дросселе L5, либо применить дополнительный трансформатор. Переделка балласта в ИБП предусматривает:

  • разборку корпуса балласта КЛЛ. Это можно сделать отверткой, которую надо поочередно, шаг за шагом вставлять по линии соприкосновения его деталей. Прилагаемое к лампе усилие не должно быть чрезмерным для колбы. Надо постараться давить на нее с минимальной силой.

    Как открыть корпус балласта КЛЛ

  • Отсоединение контактов лампы от платы балласта. Для этого их жилки отматываются с четырех штырьков на плате.

    Отсоединение контактов колбы

  • Извлечение платы и соединение всех четырех штырьков перемычками (шунтирование лампы).


Плата балласта извлечена из лампы Для дальнейшей переделки электронного балласта в блок питания из энергосберегающей лампы надо принять решение относительно трансформатора:

  • использовать имеющийся дроссель, доработав его;
  • либо применить новый трансформатор.

Импульсный блок и его назначение

На обоих концах трубки люминесцентной лампы имеются электроды, анод и катод. В результате подачи электропитания компоненты лампы разогреваются. После нагрева происходит выделение электронов, которые сталкиваются со ртутными молекулами. Следствием происходящего становится ультрафиолетовое излучение.

За счет наличия в трубке люминофора осуществляется конвертация люминофора в видимое свечение лампочки.
Свет появляется не сразу, а спустя определенный промежуток времени после подключения к электросети. Чем более выработан светильник, тем длительнее интервал.

Работа импульсного блока питания основывается на следующих принципах:

  1. Преобразование переменного тока из электросети в постоянный. При этом напряжение не меняется (то есть остается 220 В).
  2. Трансформация постоянного напряжения в прямоугольные импульсы за счет работы широтного импульсного преобразователя. Частота импульсов составляет от 20 до 40 кГц.
  3. Подача напряжения на светильник посредством дросселя.

Источник бесперебойного питания (ИБП) состоит из целого ряда компонентов, каждый из которых в схеме имеет свою маркировку:

  1. R0 – выполняет ограничивающую и предохраняющую роль в блоке питания. Устройство предотвращает и стабилизирует чрезмерный ток, идущий по диодам в момент подключения.
  2. VD1, VD2, VD3, VD4 – выступают в качестве мостов-выпрямителей.
  3. L0, C0 – являются фильтрами передачи электрического тока и защищают от перепадов напряжения.
  4. R1, C1, VD8 и VD2 – представляют собой цепь преобразователей, использующихся при запуске. В качестве зарядки конденсатора C1 используется первый резистор (R1). Как только конденсатор пробивает динистор (VD2), он и транзистор раскрываются, в результате чего начинается автоколебание в схеме. Далее прямоугольный импульс посылается на диодный катод (VD8). Возникает минусовой показатель, перекрывающий второй динистор.
  5. R2, C11, C8 – облегчают начало работы преобразователей.
  6. R7, R8 – оптимизируют закрытие транзисторов.
  7. R6, R5 – образуют границы для электротока на транзисторах.
  8. R4, R3 – используются в качестве предохранителей при скачках напряжения в транзисторах.
  9. VD7 VD6 – защищают транзисторы БП от возвратного тока.
  10. TV1 – является обратным коммуникативным трансформатором.
  11. L5 – балластный дроссель.
  12. C4, C6 – выступают как разделительные конденсаторы. Делят все напряжение на две части.
  13. TV2 – трансформатор импульсного типа.
  14. VD14, VD15 – импульсные диоды.
  15. C9, C10 – фильтры-конденсаторы.

Только продуманный подбор отдельных элементов и правильная их установка позволит создать эффективно и надежно работающий блок питания.

Отличия лампы от импульсного блока

Схема лампы-экономки во многом напоминает строение импульсного блока питания.
Именно поэтому изготовить импульсный БП несложно. Чтобы переделать устройство, понадобятся перемычка и дополнительный трансформатор, который станет выдавать импульсы. Трансформатор должен иметь выпрямитель.

Чтобы сделать БП более легким, удаляется стеклянная люминесцентная лампочка. Параметр мощности ограничивается наибольшей пропускной способностью транзисторов и размерами охлаждающих элементов. Для повышения мощности необходимо намотать дополнительную обмотку на дроссель.

Что можно добыть из старой энергосберегающей лампы? Радиодетали для повторного использования

Автор статьи наглядно показал, как разобрать и что можно добыть для повторного использования из старой энергосберегающей лампы. Таким образом можно «вернуть» часть денег заплаченных за эту лампу в свое время. Если же удастся сохранить корпус с цоколем, то его можно использовать для изготовления других ламп. Сейчас модно делать своими руками светодиодные лампы из подручных средств.

Перегоревшая энергосберегающая лампа

Далее от автора проекта в неожиданно приличном машинном переводе.

Привет всем,

сегодня я хочу показать вам, как вы можете сделать большую часть из этих денег вы вложили в энергосберегающие лампы путем извлечения его полезных деталей после он сгорел.

Цель:

Цель этой Instructable, чтобы показать вам источник свободной части можно использовать для следующих проектов и снижения потерь электроэнергии.

Вы можете получить эти детали из энергосберегающих ламп:

  • Конденсаторы
  • Диоды
  • Транзисторы
  • Катушки

Необходимые инструменты:

  • плоскую отвертку или пилу/режущий инструмент
  • оловоотсос
  • паяльник

Шаг 1: Советы По Безопасности

Пожалуйста, прочитайте следующий текст для вашей же безопасности. Я не хочу, чтобы люди пострадали так что читайте и, пожалуйста, будьте осторожны.

Файл readme:

  • Перед началом убедитесь, что стеклянные тела энергосберегающая Лампа разбита! Если он сломан, нужно запечатать его в сумку или какой-то контейнер, чтобы избежать попадания воздействию ртути внутри лампы.
  • Будьте очень осторожны, чтобы не повредить стекло и корпус светильника! Не пытайтесь открыть лампу, повернув стекло кузова или пытается порвать или как-то так.
  • Не пытайтесь открыть лампу сразу после этого сгорел. Он содержит высоковольтный конденсатор, который должен выполнять первым! Не прикасайтесь к печатной плате, если Вы не знаете, если конденсатор остается заряженным или вы можете получить удар током!

Рекомендации По Утилизации:

  • Я думаю, что лучший совет, чтобы распоряжаться сгорел или разбитые энергосберегающие лампы, чтобы положить их в емкость (например, ведро с крышкой или как-то так) и хранить контейнер в безопасном месте, пока вы не найдете место, чтобы переработать их.
  • Пожалуйста, не выбрасывайте энергосберегающие лампы в мусорное ведро! Энергосберегающие лампы являются экологически опасными и могут нанести вред людям!

Шаг 2: Откройте корпус лампы

Разборка старой энергосберегающей лампы

Ок. Начнем. Сначала посмотрим на дела. Большинстве случаев либо приклеены или закрепить вместе. (Мой был обрезан вместе, как и большинство других ламп у меня до сих пор открыт.)

Вы должны быть в состоянии открыть дело, открыв его с помощью отвертки или разрезая его открыть с помощью пилы.

В обоих случаях вы должны быть осторожны, чтобы не повредить стеклянное тело! Будьте очень осторожны.

После того как вы открыли дело, нужно просто обрезать провода, ведущие в стеклянном корпусе, так что вы можете положить его в безопасное место, чтобы избавиться от этой опасности.

Шаг 3: удалите печатную плату из корпуса

Иногда корпус сохранить не удается.Плата драйвера энергосберегающей лампы готовая к распайке.

Теперь вам необходимо извлечь плату из корпуса.

Будьте очень осторожны и не прикасайтесь к печатной плате голыми руками! Там есть высоковольтный конденсатор (большой электролитический конденсатор можно увидеть на фото) на плате, которая еще могла быть! Попробуйте удалить его из схемы путем перерезания ножки и положить его в безопасное место. (Убедитесь, что не касаетесь ногами!)

Как только высоковольтный конденсатор снимается с доски ничего не останется страха. Теперь можно приступить к отпаяйте все полезные элементы.

Заключение

Перед выполнением ремонтных работ хорошо подумайте: разбирать люминесцентную лампу можно лишь в том случае, если вы обладаете необходимыми знаниями и опытом работы.

Категорически запрещается выполнять ремонт энергосберегающих ламп с поврежденными колбами, ведь внутри трубки содержится ртуть или другие опасные элементы, а при разгерметизации изделие становится крайне небезопасным для здоровья человека.

Схемы практически одинаковы, независимо от производителя. Различия могут касаться диодов, шунтирующих спиралей, но если известны принципы конструкции одного изделия, то вы без проблем разберетесь с остальными.

Восстановление работоспособности ламп с электронным балластом

При восстановлении КЛЛ первым делом следует проверить целостность нитей накала (спиралей) внутри стеклянной колбы. Целостность нитей накала просто проверить с помощью обычного омметра. Если сопротивление нитей мало (единицы Ом), то нить исправна. Если же при замере сопротивление бесконечно велико, то нить накала перегорела и применить колбу в данном случае невозможно.

Наиболее уязвимыми компонентами электронного преобразователя, выполненного на основе уже описанной схемы (см. принципиальную схему), являются конденсаторы.

Если люминесцентная лампа не включается, то следует проверить на пробой конденсаторы C3, C4, C5. При перегрузках эти конденсаторы выходят из строя, т.к приложенное напряжение превосходит напряжение, на которое они рассчитаны. Если лампа не включается, но колба светиться в районе электродов, то возможно пробит конденсатор C5.

В таком случае преобразователь исправен, но поскольку конденсатор пробит, то в колбе не возникает разряд. Конденсатор C5 входит в колебательный контур, в котором в момент запуска возникает высоковольтный импульс, приводящий к появлению разряда. Поэтому если конденсатор пробит, то лампа не сможет нормально перейти в рабочий режим, а в районе спиралей будет наблюдаться свечение, вызываемое разогревом спиралей.

Холодный и горячий режим запуска люминесцентных ламп.

Бытовые люминесцентные лампы бывают двух типов:

  • С холодным запуском

  • С горячим запуском

Если КЛЛ загорается сразу после включения, то в ней реализован холодный запуск. Данный режим плох тем, что в таком режиме катоды лампы предварительно не прогреваются. Это может привести к перегоранию нитей накала вследствие протекания импульса тока.

Для люминесцентных ламп более предпочтителен горячий запуск. При горячем запуске лампа загорается плавно, в течение 1-3 секунд. В течение этих несколько секунд происходит разогрев нитей накала. Известно, что холодная нить накала имеет меньшее сопротивление, чем разогретая. Поэтому, при холодном запуске через нить накала проходит значительный импульс тока, который может со временем вызвать её перегорание.

Для обычных ламп накаливания холодный запуск является стандартным, поэтому многие знают, что они сгорают как раз в момент включения.

Для реализации горячего запуска в лампах с электронным балластом применяется следующая схема. Последовательно с нитями накала включается позистор (PTC — терморезистор). На принципиальной схеме этот позистор будет подключен параллельно конденсатору С5.

В момент включения в результате резонанса на конденсаторе С5, а, следовательно, и на электродах лампы возникает высокое напряжение, необходимое для её зажжения. Но в таком случае нити накала плохо прогреты. Лампа включается мгновенно. В данном случае параллельно С5 подключен позистор. В момент запуска позистор имеет низкое сопротивление и добротность контура L2C5 значительно меньше.

В результате напряжение резонанса ниже порога зажжения. В течение нескольких секунд позистор разогревается и его сопротивление увеличивается. В это же время разогреваются и нити накала. Добротность контура возрастает и, следовательно, растёт напряжение на электродах. Происходит плавный горячий запуск лампы. В рабочем режиме позистор имеет высокое сопротивление и не влияет на рабочий режим.

Нередки случаи, что выходит из строя как раз этот позистор, и лампа попросту не включается

Поэтому при ремонте ламп с балластом следует обратить на него внимание

Довольно часто сгорает низкоомный резистор R1, который, как уже говорилось, играет роль предохранителя.

Активные элементы, такие как транзисторы VT1, VT2, диоды выпрямительного моста VD1 –VD4 также стоит проверить. Как правило, причиной их неисправности служит электрический пробой p-n переходов. Динистор VS1 и электролитический конденсатор С2 на практике редко выходят из строя.

Главная &raquo Мастерская &raquo Текущая страница

Также Вам будет интересно узнать:

Поделитесь в социальных сетях:FacebookTwitter
Напишите комментарий