Как подключить люминесцентную лампу — схемы с дросселем и балластом

Рабочий механизм дроссельной платы

По внешнему виду устройство представляет собой цилиндр в металлическом корпусе. Его мощность обязательно совпадает с предельно допустимой рабочей мощностью энергосберегающей лампы. В способности дросселя входит ограничение подачи электрического тока, что предотвращает перегорание электродов лампочки.

Работа дросселя происходит в паре со стартером, по отдельности они не способны обеспечить нужные функции.


Схема подключения дросселя

Рассмотрим, как они действуют при включении дневного освещения:

  • происходит запуск стартера;
  • электроды разогреваются и происходит подача электрического тока к действующему механизму прибора;
  • за счет этого выполняется, нагрев биметаллической пластины стартера;
  • после прогрева контактов, ток приходит к дросселю;
  • дроссель скапливает ток, происходит пробивание газа, и лампа начинает светиться.

В процессе работы экономной лампы с работоспособным стартером и стабилизатором, происходит равномерное распределение напряжения, если наблюдается приход сверхтоков либо утечки тока.

Устройство и принцип работы

Все стартеры, используемые для ламп дневного света, имеют схожее устройство, которое выглядит следующим образом:

  1. Само приспособление является малогабаритной газоразрядной лампой, использующей в ходе работы принцип тлеющего разряда.
  2. Колба изготавливаетсячаще всего из стекла, внутри нее имеется инертный газ. В современных вариантах это может быть неон или смесь из водорода и гелия.
  3. Колба помещена в корпус, выполняющий защитные функции, изготавливается он из металла или прочных разновидностей пластика.
  4. Верхняя крышка корпуса может быть оснащена смотровым окошком, если конструкция предусматривает его наличие.
  5. Стартер оснащен двумя электродами, которые изготавливаются из биметалла, их конструкция может отличаться у различных моделей.
  6. Дополнительно в конструкциивсегда имеется конденсатор, который способен не только осуществлять сглаживание момента замыкания и размыкать контакты приспособления, но и осуществлять в это же время погашение дуги, которая образуется между контактами. Без конденсатора имеется риск сваривания электродов дугой, что значительно снижает эксплуатационный срок стартера.

Принцип работы подобного приспособления заключается в следующем:

  1. Изначально, оба электрода, входящие в конструкцию стартера, находятся в разомкнутом положении.
  2. После осуществления подключения к питающей электросети внутри приспособления происходит возникновение тлеющего разряда, показатель тока которого варьируется от 20 до 50 мА.
  3. Возникший разряд оказывает воздействие на электроды из биметалла, постепенно разогревая их.
  4. Нагревающийся материал провоцирует изгибание электродов стартера, что способствует прекращению разряда и последующему замыканию электрической цепи.
  5. Электрический ток начинает перемещаться по замкнутой цепи, он способствует разогреву дросселя и катодов лампы дневного света.
  6. Благодаря исчезновению тлеющего разряда, биметаллические электроды через определенное время начинают постепенно остывать. Вследствие этих изменений происходит их разгибание, что провоцирует разрыв цепи.
  7. Совершенное действие способствует возникновению импульса с высоким показателем напряжения, который воздействует на дроссель.
  8. Дроссель имеет значительную степень индуктивности, поэтому подобное воздействие способствует зажиганию лампы.
  9. Свечение лампы постепенно увеличивается и вместе с этим она начинает забирать большие объемы напряжения из электросети. Стартер имеет подключение параллельное лампе, поэтому ему начинает не хватать питания для того, чтобы он мог создать новый тлеющий разряд. Благодаря этому электроды впоследствии так и остаются в разомкнутом состоянии.

Принцип работы люминесцентного светильника

Особенность работы люминесцентных светильников заключается в том, что их нельзя напрямую подключать в сеть питания. Сопротивление между электродами в холодном состоянии большое, и величина тока, протекающего между ними, недостаточна для возникновения разряда. Для зажигания требуется импульс высокого напряжения.

Лампа с зажженным разрядом характеризуется низким сопротивлением, которое имеет реактивную характеристику. Для компенсации реактивной составляющей и ограничения протекающего тока последовательно с люминесцентным источником света включается дроссель (балласт).

Многим непонятно, для чего нужен стартер в люминесцентных лампах. Дроссель, включенный в цепь питания совместно со стартером, формирует импульс высокого напряжения для запуска разряда между электродами. Так получается потому, что при размыкании контактов стартера на выводах дросселя формируется импульс ЭДС самоиндукции величиной до 1кВ.

Watch this video on YouTube

Для чего нужен дроссель

Использование дросселя для люминесцентных ламп (балласта) в цепях питания необходимо по двум причинам:

  • формирование напряжения запуска;
  • ограничение тока через электроды.

Принцип работы дросселя основан на реактивном сопротивлении катушки индуктивности, которой является дроссель. Индуктивное сопротивление вносит сдвиг фаз между напряжением и током, равный 90º.

Из того, что ограничивающей ток величиной, является индуктивное сопротивление, следует, что дроссели, предназначенные для ламп одной мощности, нельзя использовать для подключения более или менее мощных устройств.

В некоторых пределах возможны допуски. Так, ранее отечественная промышленность выпускала люминесцентные светильники с мощностью 40 Вт. Дроссель 36W для люминесцентных ламп современного производства можно без опасений использовать в цепях питания устаревших светильников и наоборот.

Отличия дросселя от ЭПРА

Дроссельная схема включения люминесцентных источников освещения отличается простотой и высокой надежностью. Исключение составляет регулярная замена стартеров, поскольку в их состав входит группа размыкающих контактов для формирования импульсов запуска.

В то же время схема имеет существенные недостатки, которые заставили искать новые решения включения ламп:

  • длительное время запуска, которое увеличивается по мере износа лампы или снижения напряжения питания;
  • большие искажения формы напряжения питающей сети (cosф<0.5);
  • мерцание свечения с удвоенной частотой питающей сети из-за малой инерционности светимости газового разряда;
  • большие массо-габаритные характеристики;
  • низкочастотный гул из-за вибрации пластин магнитной системы дросселя;
  • низкая надежность запуска при отрицательных температурах.

Проверка дросселя ламп дневного света затрудняется тем, что приборы для определения короткозамкнутых витков распространены мало, а при помощи стандартных приборов можно только констатировать факт наличия или отсутствия обрыва.

Для устранения указанных недостатков разработаны схемы электронной пуско-регулирующей аппаратуры (ЭПРА). Работа электронных схем основана на другом принципе формирования высокого напряжения запуска и поддержания горения.

Watch this video on YouTube

Высоковольтный импульс генерируется электронными компонентами, а для поддержки разряда используется высокочастотное напряжение (25-100 кГц). Работа ЭПРА может осуществляться в двух режимах:

  • с предварительным подогревом электродов;
  • с холодным запуском.

В первом режиме на электроды подается низкое напряжения в течение 0.5-1 секунды для первоначального нагрева. По истечении времени подается высоковольтный импульс, из-за которого происходит зажигание разряда между электродами. Данный режим технически реализуется сложнее, но увеличивает срок службы ламп.

Режим холодного запуска отличается тем, что напряжение запуска подается на непрогретые электроды, вызывая быстрое включение. Такой способ запуска не рекомендован для частого использования, поскольку сильно сокращает срок работы, но его можно использовать даже с лампами с неисправными электродами (с перегоревшими нитями накала).

Схемы с электронным дросселем имеют такие преимущества:

полное отсутствие мерцания; широкий температурный диапазон использования; малые искажения формы напряжения сети; отсутствие акустических шумов; увеличение срока службы источников освещения; малые габариты и вес, возможность миниатюрного исполнения; возможность диммирования — изменения яркости путем управления скважности импульсов питания электродов

Принцип работы люминесцентного светильника

Люминесцентные светильники

Разные источники света используют разные физические принципы для создания светового излучения. В лампочке накаливания ярко светится раскалённая электрическим током вольфрамовая проволока. Электричество превращается в тепло, а тепловая энергия – в световой поток. И всё это – в одной маленькой вольфрамовой спиральке. В люминесцентном светильнике в разных его элементах происходят разные физические процессы.

ФОТО: esklad59.ruЛюминесцентная лампа

Устройство и принцип действия

Люминесцентная лампа является представителем группы газоразрядных источников света. Внешне она изготовлена в виде стеклянного баллона произвольной формы – от трубки до спирали с завитушками. Баллон наполнен инертным газом  и парами ртути. Если в этом объёме создать электрический разряд, то в парах ртути возникает ультрафиолетовое излучение.

На внутреннюю поверхность баллона нанесён слой люминофора. Это такое вещество, которое под действием ультрафиолета начинает светиться в видимом спектре. Техническая задача состоит в том, чтобы заставить лампу непрерывно светиться после нажатия кнопки «Пуск» и до момента нажатия кнопки «Стоп».

В конструкции лампы смонтированы два катода, выводные штыри, концевая панель, трубки для отвода инертного газа, ртуть, стеклянная штампованная ножка, дополненная электровводами, и другие детали. Катоды имеют вольфрамовую спираль.

ФОТО: avatars.mds.yandex.netУстройство люминесцентной лампы

Пуск лампы

Чтобы запустить лампу в работу, сначала нужно на её контакты подключить напряжение. Нить накала начнёт нагреваться, и с неё пойдёт поток частиц эмиттера. Частицы активируют смесь инертного газа и паров ртути, газовая смесь начнёт ультрафиолетовое излучение. Ультрафиолет активирует люминофор, покрывающий внутреннюю поверхность колбы, и появляется свет видимого спектра. Лампа запущена.

В пусковую схему изначально поступает напряжение. Сначала ток не будет проходить через лампу, поскольку он ограничивается высоким сопротивлением внутренней среды. Он попадает на спирали катодов и производит их разогрев. Одновременно ток идёт на стартер и даёт толчок к образованию внутри него тлеющего разряда. После того как под действием тока контакты дросселя разогреются, наступает замыкание биметаллической пластины. В результате металл становится проводником и действие разряда прекращается. На следующем этапе происходит остывание биметаллического электрода, что приводит к размыканию контактов.

Поддержание рабочего режима

Режим «Включено» должен продолжаться до появления команды «Выключить». В составе люминесцентной лампы имеется два функциональных устройства – дроссель и стартер.

ФОТО: electricalschool.infoСхематическое изображение устройства стартера тлеющего разряда: 1 – выводы, 2 – металлический подвижный электрод, 3 – стеклянный баллон, 4 – биметаллический электрод, 6 – цоколь

Стартер – это стеклянный баллончик, наполненный инертным газом и содержащий два электрода – неподвижный и биметаллический. Стартер замыкает и размыкает электрическую цепь и запускает механизм розжига инертного газа, находящегося в колбе. Изменение температурного режима внутри стартера приводит к отрыву биметалической пластинки от неподвижного электрода.

В дросселе под влиянием самоиндукции возникает импульс повышенного напряжения, который пробивает газовый промежуток в колбе. Он даёт толчок к зажиганию лампы. Лампа будет продолжать свою работу. В этом смысл включения стартера и дросселя в схему управления лампой.

Последовательное соединение двух ламп

Копируется схема стандартного подключения с использованием электромагнитного балласта.

Вторая лампа со своим стартером подключается последовательно первой. Светильник получается дешевле. Но, возникает несколько конструктивных и эксплуатационных проблем.

Конструктивные:

  • Мощность дросселя должна соответствовать суммарной мощности ламп.
  • Стартеры должны быть однотипными, рассчитанными на пониженное напряжение.

Эксплуатационные:

  • При выходе из строя одной из ламп или стартеров не будет работать весь светильник.
  • Усложняется поиск неисправности.

Конструктивные проблемы решаются просто. Необходимо только подобрать из имеющихся в наличии или приобрести подходящие по характеристикам комплектующие.

Мнение эксперта

Изосимов Владимир Николаевич

Электрик высшей категории. Специалист по осветительным приборам.

Для схемы с параллельным соединением, следует выбирать стартеры, рассчитанные на рабочее напряжение от 110 вольт.

Кроме удешевления конструкции, последовательное соединение имеет те же достоинства и недостатки, что и классическое ЭмПРА подключение.

Параллельное соединение

Такую схему собрать несложно. Вторая лампа подключается параллельно и имеет отдельный стартер. К одной из ламп, при таком соединении, целесообразно подсоединить фазосдвигающий конденсатор. Это позволит нивелировать один из недостатков схем ЭмПРА – мерцание. Конденсатор сдвинет фазу одной лампы, сгладит общий световой поток и сделает его приятнее для зрения.

Мнение эксперта

Изосимов Владимир Николаевич

Электрик высшей категории. Специалист по осветительным приборам.

Стартеры при такой сборке следует устанавливать на 220 вольт.

К плюсам электромагнитных схем, параллельное соединение добавляет еще два:

  1. Экономия средств на одном дросселе.
  2. Сглаженный световой поток.

Сколько может прослужить стартер и как его заменять?

С каждым циклом включения-выключения происходит очередной заряд, изнашивающий стартер. Чем дольше вы используете люминесцентную лампу, тем слабее с каждым включением тлеющий заряд, который рано или поздно полностью потеряет напряжение. Контакты начнут самовольно замыкаться и размыкаться, вызывая повторение импульса в цепи снова и снова. Снаружи это будет выглядеть как непрерывное мигание лампы, которое не только будет неприятно для созерцания людьми, но и в скором времени выведет из строя другие компоненты лампы, вынуждая нас производить замену не только стартера, но и всего механизма в целом

  Каждый раз, когда обращаете внимание на то, что лампа зажигается не с первого раза, бейте тревогу. Возможно, ваш стартер потерял былую функциональность и нуждается в замене. В случае, если вовремя не заменить стартер, вы постоянно будете наблюдать мигание лампы, ожидать её включения дольше, чем обычно и, в результате, должны будете потратиться на новую лампу

Не экономьте время и деньги и уделяйте время стартеру люминесцентной лампы для того, чтобы сэкономить немало средств в будущем!

В случае, если вовремя не заменить стартер, вы постоянно будете наблюдать мигание лампы, ожидать её включения дольше, чем обычно и, в результате, должны будете потратиться на новую лампу. Не экономьте время и деньги и уделяйте время стартеру люминесцентной лампы для того, чтобы сэкономить немало средств в будущем!

Подключение люминесцентных ламп — схема подключения и особенности подбора стартера (75 фото)

Люминесцентные лампы в большинстве случаев применяются в производственных критериях, в магазинах, теплицах и на складах. Для дома их стали брать только с возникновением образцов, имеющих цоколь Е27. При всей экономичности сделать лучший режим их эксплуатации без дополнительных устройств довольно трудно, к примеру, когда идет речь о параллельном подключении люминесцентных ламп. В особенностях этого процесса мы и попытаемся разобраться.

Механизм работы

Лампа представляет собой пробирку, в которую закачан инертный газ аргон с парами ртути. В конструкции имеется анод и катод. Между ними появляется разряд, вследствие чего происходит загорание в момент запуска.

Нагретые пары ртути начинают источать инфракрасное свечение, которое не доступно глазу человека. Дабы перевести свечение в нужный спектр, стены пробирки покрывают особым люминофором. Он активируется и начинает источать подходящий глазу свет.

Но испарение ртутных паров просит другого напряжения, ежели имеется в обыкновенной сети. Методы подключения люминесцентных ламп более сложные.

Дополнительно к электродам запускаются установленные дополнительно электронные и электромагнитные ПРА. Они стимулируют возникновение подходящего скачка напряжения и гарантируют отсутствие неконтролируемого его роста в процессе работы.

Внедрение стартеров

Для эксплуатации ламп с электромагнитным типом ПРА нужна стартер. Он обеспечивает замыкание в цепи. В итоге электроды разогреваются, и происходит зажигание. После нагрева до требуемого уровня цепь размыкается, аргоновый промежуток пробивается.

А вот дроссель в момент замыкания электродов ограничивает ток до подходящего уровня, содействует генерированию импульса напряжения для пробоя, также является принципиальным фактором стабильности горения разряда.

Дабы подключить лампу нужно к ее входу параллельно законтачить стартер. Для этого применяют только один штырь на каждой стороне пробирки. К оставшимся контактам лампы присоединяется дроссель. Параллельно нужно подключить и конденсатор, который компенсирует реактивную мощность и уменьшит помехи.

На рисунке подключения люминесцентных ламп можно узреть схему с электромагнитным балластом. У нее существует огромное количество недочетов:

  • длительное зажигание;
  • пульсирование;
  • наличие шумов;
  • отсутствие запуска при низких температурах.

Потому внедрение моделей с электромагнитными ПРА на данный момент ограничено. Рекомендуется применять более действенные устройства.

Работа без стартера

Подключение люминесцентных ламп без стартера делается с помощью пускорегулирующей аппаратуры электронного типа. Так как такая лампа является источником освещения с отрицательным показателем сопротивления, то ЭПРА играет роль преобразователя. Высочайшие токи могут попортить осветительный прибор, потому пускорегулирующее устройство ограничивает напряжение и сохраняет его в требуемом спектре.

Данная схема имеет плюсы. Во-1-х, лампочка не мелькает. Во-2-х, шум в процессе работы отсутствует. В-3-х, осветительный устройство остается в рабочем состоянии намного подольше. В-4-х, ЭПРА более малогабаритна по сопоставлению с дросселем.

Электронный балласт – это блок с клеммами. Снутри корпуса есть плата. Компактность устройства позволяет его использовать в всех по размеру светильниках. При выборе ЭПРА можно подобрать устройство под необходимое число ламп и их мощность.

1-ый и 2-ой контакты балласта нужно подсоединить паре выходов лампы, а 3-ий и 4-ый – ко 2-ой паре. Потом на вход нужно подать напряжение, лампа будет работать.

Подключение на две лампы

Дабы произвести подключение 2-ух люминесцентных ламп, нужно ко всем линейным светильникам подсоединить параллельно устройство стартера.

Контакт происходит на два штыря, любой из которых находится на различных сторонах пробирки. Другие контакты применяются для присоединения индукционного дросселя. На них будет подаваться электропитание.

Параллельное подключение конденсатора относительно контактов запитывающего деяния позволяет оказывать влияние на реактивную мощность и снижать уровень помех.

Внедрение пускорегулирующих приспособлений позволяет отлично эксплуатировать люминесцентные осветительные приборы в помещениях различного типа. При всем этом обеспечивается надежность и долговечность работы, компенсируются скачки напряжения.

Современное оборудование позволяет облегчить подключение люминесцентной лампы к выключателю, но работы связанные с этой задачей требуют от исполнителей электротехнических способностей.

Пара ламп и один дроссель

Принцип работы люминесцентного светильника

Особенность работы люминесцентных светильников заключается в том, что их нельзя напрямую подключать в сеть питания. Сопротивление между электродами в холодном состоянии большое, и величина тока, протекающего между ними, недостаточна для возникновения разряда. Для зажигания требуется импульс высокого напряжения.

Лампа с зажженным разрядом характеризуется низким сопротивлением, которое имеет реактивную характеристику. Для компенсации реактивной составляющей и ограничения протекающего тока последовательно с люминесцентным источником света включается дроссель (балласт).

Многим непонятно, для чего нужен стартер в люминесцентных лампах. Дроссель, включенный в цепь питания совместно со стартером, формирует импульс высокого напряжения для запуска разряда между электродами. Так получается потому, что при размыкании контактов стартера на выводах дросселя формируется импульс ЭДС самоиндукции величиной до 1кВ.

Watch this video on YouTube

Для чего нужен дроссель

Использование дросселя для люминесцентных ламп (балласта) в цепях питания необходимо по двум причинам:

  • формирование напряжения запуска;
  • ограничение тока через электроды.

Принцип работы дросселя основан на реактивном сопротивлении катушки индуктивности, которой является дроссель. Индуктивное сопротивление вносит сдвиг фаз между напряжением и током, равный 90º.

Из того, что ограничивающей ток величиной, является индуктивное сопротивление, следует, что дроссели, предназначенные для ламп одной мощности, нельзя использовать для подключения более или менее мощных устройств.

В некоторых пределах возможны допуски. Так, ранее отечественная промышленность выпускала люминесцентные светильники с мощностью 40 Вт. Дроссель 36W для люминесцентных ламп современного производства можно без опасений использовать в цепях питания устаревших светильников и наоборот.

Отличия дросселя от ЭПРА

Дроссельная схема включения люминесцентных источников освещения отличается простотой и высокой надежностью. Исключение составляет регулярная замена стартеров, поскольку в их состав входит группа размыкающих контактов для формирования импульсов запуска.

В то же время схема имеет существенные недостатки, которые заставили искать новые решения включения ламп:

  • длительное время запуска, которое увеличивается по мере износа лампы или снижения напряжения питания;
  • большие искажения формы напряжения питающей сети (cosф<0.5);
  • мерцание свечения с удвоенной частотой питающей сети из-за малой инерционности светимости газового разряда;
  • большие массо-габаритные характеристики;
  • низкочастотный гул из-за вибрации пластин магнитной системы дросселя;
  • низкая надежность запуска при отрицательных температурах.

Проверка дросселя ламп дневного света затрудняется тем, что приборы для определения короткозамкнутых витков распространены мало, а при помощи стандартных приборов можно только констатировать факт наличия или отсутствия обрыва.

Для устранения указанных недостатков разработаны схемы электронной пуско-регулирующей аппаратуры (ЭПРА). Работа электронных схем основана на другом принципе формирования высокого напряжения запуска и поддержания горения.

Watch this video on YouTube

Высоковольтный импульс генерируется электронными компонентами, а для поддержки разряда используется высокочастотное напряжение (25-100 кГц). Работа ЭПРА может осуществляться в двух режимах:

  • с предварительным подогревом электродов;
  • с холодным запуском.

В первом режиме на электроды подается низкое напряжения в течение 0.5-1 секунды для первоначального нагрева. По истечении времени подается высоковольтный импульс, из-за которого происходит зажигание разряда между электродами. Данный режим технически реализуется сложнее, но увеличивает срок службы ламп.

Режим холодного запуска отличается тем, что напряжение запуска подается на непрогретые электроды, вызывая быстрое включение. Такой способ запуска не рекомендован для частого использования, поскольку сильно сокращает срок работы, но его можно использовать даже с лампами с неисправными электродами (с перегоревшими нитями накала).

Схемы с электронным дросселем имеют такие преимущества:

полное отсутствие мерцания; широкий температурный диапазон использования; малые искажения формы напряжения сети; отсутствие акустических шумов; увеличение срока службы источников освещения; малые габариты и вес, возможность миниатюрного исполнения; возможность диммирования — изменения яркости путем управления скважности импульсов питания электродов

Классическая схема включения люминесцентных ламп

Ремонт дросселя.

Неисправность дросселя можно установить с помощью замены стартера и/или люминесцентной лампы на заведомо исправные. Если в этом случае освещения нет, то причина в нем. Неисправность дросселя можно определить и при помощи мультиметра в режиме измерения сопротивления. Работоспособный электромагнитный дроссель имеет сопротивление около 60 Ом. Допустимое отклонение составляет около 10 процентов. Если сопротивление мало, то это указывает на межвитковое замыкание. Это случается на дросселе, который достаточно долго эксплуатируется. Причина заключается в отслоении лакокрасочной изоляции и замыкании витков. Бесконечное сопротивление указывает (либо вообще нет прозвонки) на обрыв, отсутствие контакта. Скорее всего он просто сгорел, так был скачок напряжения.

Помните что при работе с любыми электроприборами необходимо соблюдать технику безопасности! 

Ремонт дросселя для люминесцентной лампы заключается в разборке: снятии кожуха при его присутствии, разборке пластин сердечника и перемотке катушки. Однако, это нецелесообразный процесс в следствие его трудоемкости и низкой цены нового. Его проще заменить на заведомо исправный. При замене необходимо соблюсти мощностные параметры.

Схемы электронного

В зависимости от типа конкретной лампочки элементы ЭПРА могут иметь различную реализацию, как по электронной начинке, так и по встраиваемости. Ниже будут рассмотрены несколько вариантов для приборов с различной мощностью и конструкцией.

Схема ЭПРА для ламп дневного света с мощностью 36 Вт

В зависимости от применяемых электронных деталей по типу и техническим показателям у балластников электрическая схема может существенно отличаться, однако выполняемые ими функции будут такими же.

На приведенном выше рисунке в схеме используются такие элементы:

  • диоды VD4–VD7 предназначены для выпрямления тока;
  • конденсатор С1 предназначен для фильтрации тока, проходящего через систему диодов 4-7;
  • конденсатор С4 начинает зарядку после подачи напряжения;
  • динистор CD1 пробивается в момент достижения напряжением показателя 30 В;
  • транзистор T2 открывается после пробития 1 динистора;
  • трансформатор TR1 и транзисторы T1, T2 запускаются в результате активации на них автогенератора;
  • генератор, дроссель L1 и последовательные конденсаторы С2, С3 на частоте примерно 45–50 кГц начинают резонировать;
  • конденсатор С3 включает лампу после достижения на нем пусковой величины заряда.

Мнение эксперта

Виктор Гольштейн

Эксперт по медицинскому оборудованию. Начинающий блогер.

СПРАВКА: Резонанс нужен для стабильного функционирования схемы, а в результате пуска дросселем ограничивается ток при снижении в генераторе напряжения и регулирующей частоты.

Схема ЭПРА на базе диодного моста для ЛДС с мощностью 36 Вт

В приведенной схеме есть одна особенность – колебательный контур встраивается в конструкцию самого осветительного прибора, что обеспечивает резонанс прибора до момента появления в колбе разряда.

Таким образом, частью контура будет выступать нить накала лампы, что в момент появления разряда в газовой среде сопровождается изменением в колебательном контуре соответствующих параметров. Это выводит его с резонанса, что сопровождается снижением до рабочего уровня напряжения.

Схема ЭПРА для ЛДС с мощностью 18 Вт

Лампы, которые оснащены Е27 и Е14 цоколем сегодня получили наибольшее распространение среди потребителей. В этом приборе балласт встраивается прямо в конструкции устройства. Выше приведена соответствующая схема.

Схема ЭПРА на базе диодного моста для ЛДС с мощностью 18 Вт

Необходимо учитывать особенность строения автогенератора, в основу которого входит пара транзисторов.

Из повышающей обмотки, обозначенной на схеме 1-1 трансформатора Тр, поступает питание. Частями последовательного колебательного контура выступает дроссель L1 и конденсатор С2, резонансная частота которого от генерируемой автогенератором существенно отличается. Приведенная выше схема используется для настольных осветительных приборов бюджетного класса.

Схема ЭПРА в более дорогих устройствах для ЛДС с мощностью 21 Вт

Необходимо отметить, что более простые схемы балласта, которые применяются для осветительных приборов типа ЛДС, не смогут гарантировать длительную эксплуатацию лампы, поскольку подвергаются большим нагрузкам.

У дорогих изделий такой контур обеспечивает стабильное функционирование на протяжении всего эксплуатационного срока, поскольку все используемые элементы соответствуют более серьезным техническим требованиям.

Подключение ЭПРА

Поделитесь в социальных сетях:FacebookX
Напишите комментарий